
Breast Cancer Detection in Mammograms using

Deep Learning Techniques

Adam Jaamour

Supervised by Dr David Harris-Birtill & Lewis McMillan

Master’s of Science (MSc) in Artificial Intelligence
University of St Andrews - School of Computer Science

August 14, 2020

Breast Cancer Detection in Mammograms

using Deep Learning Techniques

Submitted by: Adam Jaamour

I declare that the material submitted for assessment is my own work except
where credit is explicitly given to others by citation or acknowledgement.
This work was performed during the current academic year except where
otherwise stated.

The main text of this project report is 14,345 words long (calculated by
Overleaf word counter), including project specification and plan.

In submitting this project report to the University of St Andrews, I give per-
mission for it to be made available for use in accordance with the regulations
of the University Library. I also give permission for the title and abstract to
be published and for copies of the report to be made and supplied at cost
to any bona fide library or research worker, and to be made available on the
World Wide Web. I retain the copyright in this work.

Signed:

Adam Jaamour

Abstract

The objective of this dissertation is to explore various deep learning tech-
niques that can be used to implement a system which learns how to detect
instances of breast cancer in mammograms. Nowadays, breast cancer claims
11,400 lives on average every year in the UK, making it one of the deadliest
diseases. Mammography is the gold standard for detecting early signs of breast
cancer, which can help cure the disease during its early stages. However, in-
correct mammography diagnoses are common and may harm patients through
unnecessary treatments and operations (or a lack of treatments). Therefore,
systems that can learn to detect breast cancer on their own could help reduce
the number of incorrect interpretations and missed cases.

Convolution Neural Networks (CNNs) are used as part of a deep learning
pipeline initially developed in a group and further extended individually. A
bag-of-tricks approach is followed to analyse the effects on performance and
efficiency using diverse deep learning techniques such as different architectures
(VGG19, ResNet50, InceptionV3, DenseNet121, MobileNetV2), class weights,
input sizes, amounts of transfer learning, and types of mammograms.

Ultimately, 67.08% accuracy is achieved on the CBIS-DDSM dataset by
transfer learning pre-trained ImagetNet weights to a MobileNetV2 architec-
ture and pre-trained weights from a binary version of the mini-MIAS dataset
to the fully connected layers of the model. Furthermore, using class weights to
fight the problem of imbalanced datasets and splitting CBIS-DDSM samples
between masses and calcifications also increases the overall accuracy. Other
techniques tested such as data augmentation and larger image sizes do not
yield increased accuracies, while the mini-MIAS dataset proves to be too small
for any meaningful results using deep learning techniques. These results are
compared with other papers using the CBIS-DDSM and mini-MIAS datasets,
and with the baseline set from deep learning pipeline developed as a group.

Keywords

Deep Learning; Convolution Neural Networks; Transfer Learning; Breast
Cancer Detection; Mammogram Classification; CBIS-DDSM; mini-MIAS

Contents

List of Figures vi

List of Tables ix

List of Acronyms x

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Description . 2
1.3 Objectives . 3
1.4 Report Structure . 3

2 Context Survey 5
2.1 Breast Cancer Detection . 5

2.1.1 Medical imagery screening tests & biopsies 5
2.1.2 Early Breast Cancer Detection Systems 6
2.1.3 Towards Supervised Machine Learning-based Systems . 6

2.2 Machine Learning Tasks & Algorithms 7
2.2.1 Machine Learning Applications to Breast Cancer Detec-

tion . 7
Types of machine learning algorithms 7
Types of machine learning tasks 8

2.2.2 Comparison of BCD Supervised Learning Algorithms . 10
k-Nearest Neighbours 10
Naive Bayes . 11
Decision Trees . 12
Support Vector Machines 13
Artificial Neural Networks 15
Supervised machine learning algorithms comparison . . 17

2.3 CNNs & Deep Learning techniques 17
2.3.1 Convolution Neural Networks 17

Motivation for CNNs over traditional neural networks . 17
CNN structure . 18

ii

CONTENTS iii

CNN Architectures . 20
2.3.2 Deep Learning Applications in Breast Cancer Detection 21

Main challenges . 21
Transfer learning . 21
Regularisation techniques 22
Technological advances 24

2.4 Summary . 24

3 Ethics & Datasets 26
3.1 Ethical Considerations . 26
3.2 Datasets Description . 26

3.2.1 DDSM . 26
3.2.2 CBIS-DDSM . 27
3.2.3 mini-MIAS . 28

4 Design 29
4.1 Datasets Decision . 29
4.2 Deep Learning Pipeline Design Analysis 30

4.2.1 Data Pre-Processing . 30
Dataset balance . 30
Dataset split . 31
Data loading . 32
Data normalisation . 32
Label encoding . 33

4.2.2 Model Training . 34
CNN model . 34
Data fitting . 34

4.2.3 Result Visualisation . 37
Overall accuracy . 37
Precision & recall . 38
F1 score . 38
Confusion matrix . 38

4.3 General Design Decisions . 38
4.3.1 Programming Language 38
4.3.2 Deep Learning Framework 39
4.3.3 Interface . 39

4.4 Design Decisions Summary . 39

5 Implementation 41
5.1 Code Design . 41
5.2 General . 42

5.2.1 Command-Line Interface 42
5.2.2 Results reproducibility 42

5.3 Data Pre-Processing . 43

CONTENTS iv

5.3.1 Initial Dataset Processing 43
5.3.2 Data Loading . 43
5.3.3 Data Processing . 43
5.3.4 Dataset Splits . 44
5.3.5 Data Augmentation & Class Balance 44

5.4 Model Training . 45
5.4.1 Sequential Model . 45
5.4.2 Training Steps . 46
5.4.3 Model & Weights Saving 47

5.5 Predictions & Results visualisation 47
5.6 Pipeline Flowchart . 47

6 Results & Evaluation 49
6.1 Test Data . 49
6.2 Model Used . 49
6.3 Baseline Results . 50
6.4 Base CNN Architectures . 50
6.5 Class Imbalance . 51

6.5.1 Data Augmentation . 51
6.5.2 Class Weights . 53

6.6 Input Image Size . 55
6.7 Varying Amounts of Transfer Learning 57
6.8 Mammogram Types . 59
6.9 Results Summary . 61

7 Conclusions 63
7.1 Achievements . 63
7.2 Code Availability . 63
7.3 Limitations . 64
7.4 Future Work . 65
7.5 Reflections . 65

Bibliography 66

A Ethical Application Approval Letter 74

B Languages & Frameworks Comparison 76
B.1 Programming Languages . 76
B.2 Deep Learning Frameworks . 76

C Usage Instructions 78
C.1 Installation Instructions . 78
C.2 Individual Code Instructions 78
C.3 Common Pipeline Code Instructions 79

CONTENTS v

C.4 Dataset Installation Instructions 80
C.4.1 mini-MIAS dataset . 80
C.4.2 CBIS-DDSM dataset . 80

D Remote Work Environment 82
D.1 Coding environment . 82
D.2 Code collaboration . 83
D.3 Supervisor meetings . 83

E Team Meeting Summaries 84

F Coding Project Structure 94

List of Figures

1.1 Example of three types of mammograms, including normal, be-
nign and malignant cases. Figures extracted from the mini-
MIAS dataset (Suckling, 1994). Created using draw.io. 2

2.1 Timeline of the evolution of breast cancer detection (BCD) sys-
tems synthesising the information described in Sections 2.1.1 and 2.1.2. 7

2.2 Example of a breast mammogram classification, showing benign
(left) and malignant (right) mammograms. Images retrieved
from the mini-MIAS dataset (Suckling, 1994). 9

2.3 Example of a breast mammogram segmentation, showing the
original mammogram (left) and the segmented image (right),
depicting large masses. Images retrieved from Punithaet al.
(2018). 10

2.4 Example of a kNN classifier distinguishing between benign (blue
square) and malignant (red triangle) tumours for a test data
sample (green circle) using k = 3. The test sample is classi-
fied as malignant as there are two red triangles and one blue
square amongst the three neighbours. Figure retrieved from T.
Srivastava (https://tinyurl.com/y3jqco49). 11

2.5 Example of a decision tree classifier distinguishing between be-
nign and malignant tumours based on three extracted features
from a dataset of mammograms: the size of the bare nuclei,
the thickness of the clump and the uniformity of the cell size.
Figure created by Yue et al. (2018). 13

2.6 Example of a SVM classifier’s maximum margin hyperplane
found to separate benign and malignant tumours based on two
extracted features from a dataset of mammograms: the size
of the bare nuclei and the uniformity of the cell size. Figure
created by Yue et al. (2018). 14

2.7 Example of an ANN classifier distinguishing between benign
and malignant tumours based on six extracted features from a
dataset of mammograms. Figure created by Yue et al. (2018). . 15

vi

https://tinyurl.com/y3jqco49

LIST OF FIGURES vii

2.8 Example of a typical CNN adapted for multi-class breast cancer
detection. Figure adapted from S. Saha (https://tinyurl.
com/y9mmosuq). 18

2.9 Difference between max pooling and average pooling using a
2x2 window and stride 2 (left) to downsample an image (right).
Figure adapted from W. Ong (https://tinyurl.com/y25cke6l). 20

2.10 Example of transformations applied to a mammogram to gener-
ate new images. Original image retrieved from the mini-MIAS
dataset (Suckling, 1994). 22

2.11 Example of standard neural network (left) and a neural network
with dropout applied (right). Figure retrieved from Srivastava
et al. (2014). 23

3.1 Types of structures and views captured by the CBIS-DDSM
dataset (CC and MLO mammogram views are from the same
patient). 27

3.2 The three different types of breast background found in the
mini-MIAS dataset. 28

4.1 A high-level flowchart of the breast cancer detection deep learn-
ing pipeline to implement, separated into data pre-processing,
model training, results visualisation and fine-tuning. 30

4.2 Class distribution for the mini-MIAS and the CBIS-DDSM datasets. 31
4.3 Example of the pixels values that make up a mammogram be-

fore and after normalisation. 33
4.4 CNN architecture used. VGG19 image retrieved from https:

//tinyurl.com/rpp49oc. 35
4.5 Visualisation of the sigmoid and softmax activation functions. . 35

5.1 Original dataset divided into training, validation and testing
sets using a 60/20/20% split. 44

5.2 Example of affine transforms applied to mini-MIAS mammo-
grams to generate new samples. Original image retrieved from
the mini-MIAS dataset (Suckling, 1994). 45

5.3 A detailed flowchart of the breast cancer detection deep learning
pipeline implemented, separated between data pre-processing,
model training, results visualisation and fine-tuning. 48

6.1 Training (2445 samples) and prediction (641 samples) runtimes
on the CBIS-DDSM dataset when using different CNN archi-
tectures as the base model pre-trained on ImageNet 51

6.2 Confusion matrix when double data augmentation is applied on
the mini-MIAS test dataset with MobileNetV2 as the base model. 52

https://tinyurl.com/y9mmosuq
https://tinyurl.com/y9mmosuq
https://tinyurl.com/y25cke6l
https://tinyurl.com/rpp49oc
https://tinyurl.com/rpp49oc

LIST OF FIGURES viii

6.3 Training runtimes when using no data augmentation, augmen-
tation to fix class balance and to double the training set size
(744, 372 and 192 samples respectively) on the mini-MIAS dataset. 53

6.4 Normalised confusion matrix when no class weights are used
with MobileNetV2 as the base model on the CBIS-DDSM dataset. 54

6.5 Normalised confusion matrix when balanced class weights are
used with MobileNetV2 as the base model on the CBIS-DDSM
dataset. 55

6.6 Evolution of the accuracy and loss during both training phases
when testing 1024x1024 input size on VGG19. 56

6.7 Training (2445 samples) and prediction (641 samples) runtimes
on the CBIS-DDSM dataset when using different input image
sizes (224, 512 and 1024 pixels). 57

6.8 Training (2445 samples) and prediction (641 samples) runtimes
on the CBIS-DDSM dataset when using different amounts of
transfer learning through the binary mini-MIAS and ImageNet
datasets with MobileNetV2 as a base model. 59

6.9 Training and prediction runtimes on the CBIS-DDSM dataset
when using different mammogram types (all, masses and calci-
fications). 61

6.10 Bar chart summarising the relative accuracies achieved for each
experiment compared to the baseline developed as group on the
CBIS-DDSM dataset. 62

B.1 Chart highlighting the number of articles mentioning Keras and
PyTorch. Figure downloaded from Keras website. 77

B.2 Chart depicting the number of PyPI downloads for Keras and
PyTorch. Figure downloaded from Keras website. 77

D.1 Screenshot of the Jupyter Lab interface used to implement the
project. 83

F.1 Screenshot of the project structure. 95

List of Tables

4.1 Conversion from string format (categorical) to one-hot encoding. 33
4.2 Conversion from string format (categorical) to binary encoding. 34

6.1 Results achieved on the CBIS-DDSm test set when using dif-
ferent CNN architectures as the base model pre-trained on Im-
ageNet weights. 50

6.2 Results achieved on the mini-MIAS test set when using different
amounts of data augmentation (none, balanced and double). . . 52

6.3 Results achieved on the CBIS-DDSM test set when using dif-
ferent class weights (none, balanced and +50% minority class)
with VGG19 and MobileNet architectures as base model. . . . 54

6.4 Results achieved on the CBIS-DDSM test set when using dif-
ferent input image sizes (224, 512 and 1024 pixels). 56

6.5 Results achieved on the test set when using different amounts
of transfer learning on the CBIS-DDSM dataset with the Mo-
bileNetV2 base model. 58

6.6 Results achieved with on the test set when using different types
of mammograms (VGG19, ResNet50, InceptionV3, DenseNet121
and MobileNetV2) on the CBIS-DDSM dataset. 60

7.1 DDSM dataset patient population statistics (female). Data col-
lected by Massachusetts General Hospital (MGH) and Wake
Forest University School of Medicine (WFUSM) (Heath et al.,
2001). 64

B.1 Table comparing the pros and cons of different programming
languages when implementing a deep learning system. 76

ix

List of Acronyms

Adam Adaptive moment estimation

ANN Artificial Neural Network

AR Association Rule learning

AUC Area Under the Curve

BCD Breast Cancer Detection

BP Backpropagation

CAD Computer-Aided Detection/Diagnosis

CBIS-DDSM Curated Breast Imaging Subset of DDSM (dataset)

CC Bilateral craniocaudal (mammogram)

CLI Command Line Interface

CNN Convolutional Neural Network

CPU Central Processing Unit

DT Decision Tree

GPU Graphical Processing Unit

kNN k-Nearest Neighbours

mini-MIAS mini Mammography Image Analysis Society (dataset)

MLO Mediolateral oblique (mammogram)

MLP Multi-Layer Perceptron

MRI Magnetic Resonance Imaging

NB Naive Bayes

OOM Out Of Memory (error)

x

LIST OF ACRONYMS xi

PNN Probabilistic Neural Networks

RAM Random-Access Memory

ReLU Rectified Linear Unit

RMSProp Root Mean Square Prop

ROC Receiver Operating Characteristic

ROI Region of Interest

SGD Stochastic Gradient Descent

SVM Support Vector Machine

WBCD Wisconsin Breast Cancer Wisconsin (dataset)

Acknowledgements

I have received a great deal of support and guidance throughout my Master’s
degree at the University of St Andrews and would like to take the opportunity
to thank those who helped me and motivated to always improve throughout
this year.

First of all, I would like to thank my project supervisor, Dr David Harris-
Birtill, whose expertise in the domain of machine learning has been invaluable
to this project. I would like to extend my thanks to my project’s co-supervisor,
Lewis McMillan, for his practical knowledge of implementing deep learning
systems, and to my team members, Ashay Patel and Shuen-Jen Shen, for
their intuitive insights and help when developing the code in the middle of a
pandemic. I also wish to thank the individuals who took the time, effort and
patience to proof-read this dissertation and offer precious advice.

Finally, I would like to thank all my family and friends, especially my
mother, father, sister and grandmother, for their love, encouragement and
constant support to pursue my dreams.

xii

Chapter 1

Introduction

1.1 Motivation

Breast cancer is one of the most common forms of cancer amongst women in
the UK, with statistics indicating that 1 in 7 females will be diagnosed with
breast cancer in their lifetime. Indeed, 55,200 new breast cancer cases are
reported every year in the UK, of which a disheartening average of 11,400 lead
to death (Cancer Research UK, 2020). With an average of 20% mortality rate,
breast cancer is ranked as one of the deadliest diseases.

Early detection of breast cancer through screening tests such as mammo-
grams is an efficient way to maximise patients’ survival rate by treating the
disease prematurely. However, no matter the expertise of radiologists exam-
ining mammograms, external factors such as fatigue, distractions and human
error need to be minimised (Polat and Güneş, 2007), as the rate of missed
breast cancers during initial mammogram screenings are as high as 30% (Elter
and Horsch, 2009). To convey the complexity of mammogram interpretation,
Figure 1.1 illustrates three different mammograms containing either normal
or abnormal (benign and malignant) cases, and how similar they all look to
an untrained eye.

Error-prone mammogram interpretations by radiologists can lead to deci-
sions that can ultimately harm the patients. If a mammogram is diagnosed
as malignant, breast biopsies (extraction of cells in breast tissue) are usually
prescribed. However, 40-60% of biopsies are diagnosed as benign, clearly be-
traying the necessity for correct mammography diagnosis to avoid needless
operations, anxiety and pain for the patients (Hepsaǧ et al., 2017). On the
one hand, breast cancers can be missed altogether, inducing an absence of
treatments for sick patients, while on the other hand, an instance of breast
cancer can be reported when in reality there is no cancerous tumour, leading
to unnecessary treatment being carried out (Elter and Horsch, 2009).

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Example of three types of mammograms, including normal, benign
and malignant cases. Figures extracted from the mini-MIAS dataset (Suckling,
1994). Created using draw.io.

To that end, using Computer-Assisted Detection (CAD) software can help
minimise the number of wrong interpretations and increase the accuracy of
mammography screening (Shen et al., 2017).

The motivation behind this project is to explore techniques for implement-
ing a deep learning system that can accurately detect breast cancer in order
to prevent late treatments due to false negatives as well as preventing unnec-
essary treatments in cases of false positives. Ultimately, the long-term target
of this project is to combine it with other deep learning algorithms developed
across other projects supervised by Dr David Harris-Birtill (past and present).
This will allow a general artificial intelligence system capable of detecting mul-
tiple forms of cancer with higher accuracies than radiologist diagnoses.

1.2 Problem Description

CAD systems using deep learning techniques could, in theory, highly increase
the accuracy of mammogram screenings for detecting early signs of breast
cancers. However, these techniques require large amounts of data to learn the
cancer’s underlying patterns and adapt to new cases, and require powerful
computing resources to accelerate the process of learning the data, making
them very hard to optimise.

CHAPTER 1. INTRODUCTION 3

Parts of the work undertaken during this project will be conducted as
a group comprised of two other members, Ashay Patel and Shuen-Jen Chen.
Section 1.3 covers which tasks will be conducted personally/in a group in more
detail. The reasoning behind these common tasks is for a functional pipeline to
be reached earlier, eventually allowing each group member to further explore
deep learning techniques individually more quickly due to the limited time
frame of this project, using the common primary pipeline as a baseline.

1.3 Objectives

The main objective of this project consists of implementing a deep learning
pipeline that will be able to learn how to detect cases of breast cancer in
mammograms. This objective is broken down into two steps:

• Group work: a common deep learning pipeline will be initially im-
plemented as part of a group with Ashay Patel and Shuen-Jen Chen
over the course of a three-week period, including data cleaning and pre-
processing, results output and a basic deep learning model. The distri-
bution of tasks between the group can be found in Appendix E.

• Individual work: the pipeline above will then be individually extended
and evaluated by using various deep learning techniques.

An extensive context survey has to first be conducted to cover the back-
ground of deep learning techniques applied to the field of cancer detection
and to review existing results. This includes identifying results achieved using
different methods (e.g. traditional machine learning techniques). This step is
primordial as it will guide the research towards the most promising areas, as
well as govern the choice of techniques to implement and explore in further
chapters.

Finally, the final results achieved individually will be compared with the
baseline pipeline created as a group, as well as the results found in papers that
used the same datasets.

1.4 Report Structure

Introduction Presents an overview of the subject’s background through
the problem description and the motivation behind this project, followed by
the objectives that the project aims to achieve.

Context Survey Explores the literature and background surrounding
breast cancer detection techniques, starting from primitive cancer detection
systems, followed by traditional machine learning methods, and ending with

CHAPTER 1. INTRODUCTION 4

the deep learning techniques that have been recently used.

Ethics & Datasets Considers the ethical issues taken into account for
this project and describes the datasets used.

Design Explores high-level design considerations regarding the deep learn-
ing pipeline to implement and the software in general.

Implementation Comprehensively covers the steps followed when imple-
menting the deep learning pipeline, explaining the practical solutions followed.

Evaluation Reviews the different results to assess the efficiency of the
different techniques used to train the model and how it compares to other
models, including the common pipeline, the baseline and relevant results iden-
tified in the context survey.

Conclusions Summarises the project’s accomplished objectives, its limi-
tations, plans for future work, and a final reflection on the project as a whole.

Chapter 2

Context Survey

2.1 Breast Cancer Detection

2.1.1 Medical imagery screening tests & biopsies

Test screenings have been used to detect early signs of breast cancer before
the appearance of any symptoms (e.g. lumps that can be felt to the touch
of a hand). The main methods used for breast cancer screenings are mam-
mograms, which are low-dosage x-rays around the breast area usually used as
initial/regular screening tests. These scans reveal backgrounds in black and
dense areas in white, which may correspond to calcifications or masses (e.g.
lumps or cysts). If suspicious areas are detected, mammograms are followed by
breast ultrasounds for analysing these masses, and by breasts MRIs (Magnetic
Resonance Imaging) for detailed imagery of the breast, usually used when a
malignant tumour has been detected to get more information about it, such
as its size and location, or to find additional ones (American Cancer Society,
2019). If any of the screenings mentioned earlier raise suspicion or reveal a
potential presence of breast cancer, then biopsies can be conducted to confirm
the screening tests’ results. Biopsies consist of extracting cells or a small part
of the breast’s tissue and sending them to a lab to be analysed by pathologists
to get definite results (Martin, Laura J., 2019).

Due to the invasive nature of biopsies, it is ideal for patients to use med-
ical imagery tools to detect early signs of breast cancer that can be treated
efficiently rather than immediately conducting a biopsy. Mammograms are
the primary imagery method used for early breast cancer detection (BCD)
(Ramos-Pollán et al., 2012). However, BCD using mammograms, and any
form of cancer detection using medical imagery, relies on the conventional di-
agnoses of expert radiologists (Osareh and Shadgar, 2010). These diagnoses
rest on the correct interpretation of the mammograms, which may be subject
to errors due to the difficulty of correctly interpreting them (Elter and Horsch,

5

CHAPTER 2. CONTEXT SURVEY 6

2009). Indeed, mammograms are 2D images of 3D breasts that correspond to
the superposition of breast tissue, which increases the difficulty for a radiolo-
gist to correctly analyse patterns as masses often naturally form due to this
superposition (Elter and Horsch, 2009).

2.1.2 Early Breast Cancer Detection Systems

To assist radiologists in their interpretations of mammograms, CAD software
has been employed since the 1970s. However, pre-1990s CAD systems were
very primitive and did not offer much more knowledge than the expert radiol-
ogists’ knowledge. These unsophisticated “expert” systems consisted of man-
ually processing and modelling pixels to construct rule-based systems that
mainly used if-else-then statements (Litjens et al., 2017), highlighting their
inadequacy to learn how to recognise patterns that can be used to detect the
vast possible forms that breast cancer can take.

2.1.3 Towards Supervised Machine Learning-based Systems

Towards the late 1990s, supervised machine learning techniques started replac-
ing these expert systems, allowing hidden patterns in the mammograms’ data
that could not be perceived by radiologists to now be recognised by these new
algorithms (Litjens et al., 2017). Machine learning-based approaches were
selected over statistical approaches to replace expert systems as they were
proven to be more suitable for classification tasks than traditional statistics-
based approaches such as regression (Paliwal and Kumar, 2009), especially
when dealing with large, complex and high-dimensional datasets like mammo-
gram datasets (Yue et al., 2018). This marked the shift from CAD systems
that were fully designed by humans to systems that were trained on datasets
of medical imagery (Litjens et al., 2017).

However, these machine learning models could not accurately operate on
purely raw data such as the full-sized mammogram images. Indeed, all of
the machine learning models tested against the task of BCD required relevant
pieces of information to first be extracted from the image to solve the given
task, using models such as k-Nearest Neighbour [kNN], Decision Trees [DT],
Naive Bayes [NB] (Asri et al., 2016), Support Vector Machines [SVM] (Ramos-
Pollán et al., 2012) and Artificial Neural Networks [ANN] (Yue et al., 2018).
These crucial bits of information pulled from the mammograms data corre-
spond to features, and need to be extracted by humans before being fed to the
aforementioned models for training. These features range from visual infor-
mation, such as colours, edges, corners, shapes and textures (Li and Allinson,
2008), to extracted information, such as the cell size, clump thickness, bare
nuclei, etc. (Yue et al., 2018).

CHAPTER 2. CONTEXT SURVEY 7

Logically, the next step in the evolution of BCD systems is for the model
to learn these features on its own directly from the data, rather than being
fed hand-crafted features (Yala et al., 2019). Deep learning models, which
corresponds to neural networks with hundreds of hidden layers, are based on
this concept. However, these models have not been successfully implemented
until recent years as they require powerful computers, usually equipped with
Graphical Processing Units (GPU) to be efficiently trained. This means that
until recent years, machine learning models have led the field of BCD, with
some manual mammogram interpretations still being carried out by radiolo-
gists (Litjens et al., 2017), as depicted in Figure 2.1.

Figure 2.1: Timeline of the evolution of breast cancer detection (BCD) systems
synthesising the information described in Sections 2.1.1 and 2.1.2.

2.2 Machine Learning Tasks & Algorithms

2.2.1 Machine Learning Applications to Breast Cancer Detec-
tion

Types of machine learning algorithms

Machine learning algorithms fall in different categories based on whether hu-
man supervision is required or not. The two main types of machine learning
algorithms correspond to supervised and unsupervised learning. On the one
hand, in supervised learning, the dataset is labelled, meaning every sample
in the dataset includes a solution (Caruana and Niculescu-Mizil, 2006). This
label y is used to make a prediction ŷ by fitting the input features x from a
training dataset. The goal of a supervised learning algorithm is to determine
the optimal parameters θ for the selected algorithm in order to minimise a
loss function defined as L(y, ŷ), which corresponds to the error between ŷ and
y (Litjens et al., 2017). A large variety of loss functions can be used such
as the general Mean Squared Error (MSE) and Mean Absolute Error (MAE)

CHAPTER 2. CONTEXT SURVEY 8

loss functions, or more specific loss functions such as the Hinge Loss for SVMs
(Géron, 2019). The main applications of supervised learning are classification
and regression, with the former being the most relevant to BCD.

On the other hand, in unsupervised learning, the data is unlabelled, mean-
ing only the input features x are available while the labels y are not (Litjens
et al., 2017). This means the algorithm cannot optimise its hyperparameters,
which correspond its configurations used to define it before training (Bergstra
et al., 2013), by minimising a loss function. Instead, the algorithm needs to
automatically create clusters in the dataset in order to separate them into dif-
ferent groups. The main applications of unsupervised learning are clustering,
anomaly detection, data visualisation and dimensionality reduction (Géron,
2019), rendering them irrelevant to breast cancer detection. Two other cate-
gories of machine learning algorithms exist, corresponding to semi-supervised
learning and reinforcement learning, but are also irrelevant to the task of de-
tecting breast cancer.

Among the two types of machine learning algorithms, the most pertinent
one for the task of BCD is supervised learning as datasets of mammograms
need to contain properly labelled data for each sample, indicating the status
of the mammogram, i.e. no tumour, benign tumour, malignant tumour (Shen
et al., 2017).

Types of machine learning tasks

Two types of machine learning tasks are relevant to medical imagery anal-
ysis, including mammogram analysis for BCD: detection (classification) and
segmentation (Litjens et al., 2017).

Detection corresponds to the classification of a medical image or exam,
which is an interpretation that used to be entirely carried out by a radiologist
before the appearance of CAD systems. The classification can be either binary
or multi-class, depending on the data used (see Section 4.1). With datasets
like the “Curated Breast Imaging Subset of DDSM” (Lee et al., 2017), the clas-
sification is binary as mammograms can only be classified as either “benign”
or “malignant”. However, when using datasets like the “Digital Database
for Screening Mammography” (Heath et al., 2001), the classification becomes
more interesting from a clinical point of view as mammograms can either be
classified as “normal”, “benign” or “malignant” (Litjens et al., 2017). An
example of classification between benign and malignant mammograms can be
found in Figure 2.2, reinforcing the complexity that comes with interpreting
mammograms for radiologists and the need for accurate and reliable CAD
systems to improve the prediction accuracies.

CHAPTER 2. CONTEXT SURVEY 9

(a) A benign mammogram. (b) A malignant mammogram.

Figure 2.2: Example of a breast mammogram classification, showing benign
(left) and malignant (right) mammograms. Images retrieved from the mini-
MIAS dataset (Suckling, 1994).

Segmentation corresponds to the classification of each pixel in the image
based on the class the pixels belongs to, without distinguishing pixels from the
same class. All objects in the image belonging to the same class will be classi-
fied in the same grouping of pixels (Géron, 2019). In breast cancer detection,
segmentation can be used to highlight masses such as calcifications, cysts or
fibroadenomas (What Mammograms Show: Calcifications, Cysts, Fibroadeno-
mas, 2018) in mammograms by separating the masses from the background.
An example is shown in Figure 2.3, where mammograms are partitioned into
non-overlapping segments, revealing potential masses in the image (Punitha
et al., 2018).

Other machine learning tasks that have been used in medical imagery anal-
ysis consist of content-based image retrieval (retrieving similar images from a
database) or image enhancement (erasing obstructing elements from an image
and increasing quality) (Litjens et al., 2017), but will not be further explored
as they are not directly relevant to the task of breast cancer detection.

The task of classification (detection) can be used to interpret whether a
breast is affected by cancer through the analysis of databases of mammograms,
while the task of segmentation can be used to localise a tumour within a breast
by finding regions that may correspond to masses, pinpointing potential danger
areas that may lead to cancerous cells.

CHAPTER 2. CONTEXT SURVEY 10

(a) Original mammogram images. (b) Segmented mammogram images.

Figure 2.3: Example of a breast mammogram segmentation, showing the
original mammogram (left) and the segmented image (right), depicting large
masses. Images retrieved from Punithaet al. (2018).

2.2.2 Comparison of BCD Supervised Learning Algorithms

Since the late 1990s, a rich array of supervised machine learning algorithms
have been applied and tested against the task of BCD, contributing to improv-
ing accuracies for detecting breast cancer (Yue et al., 2018). The main types of
algorithms used in BCD, which consist of k-Nearest Neighbour (kNN), Naive
Bayes (NB), Support Vector Machines (SVM), Decision Trees (DT) and Ar-
tificial Neural Networks (ANN), are briefly explained in the ensuing sections
from most simple to most complex. Their performances in BCD are then
compared to draw a picture of the advantages and disadvantages that each
method brings.

k-Nearest Neighbours

k-Nearest Neighbours (kNN) is often used as an initial benchmark when study-
ing a dataset with no prior knowledge (Peterson, 2009). It is a non-parametric
and lazy model, as it does not learn the data’s pattern but rather classifies a
test sample by looking at its k nearest neighbours (Yue et al., 2018). The sam-
ple data point’s nearest neighbours are determined by using distance metrics
such as the Euclidian distance, which is the most widely used metric (Peterson,
2009). Equation 2.1 (adapted from Russell and Norvig (2002)) calculates the
distance between two data points s and p in n-dimensional space. An example
of how a kNN classifier would be used to distinguish between a benign and a

CHAPTER 2. CONTEXT SURVEY 11

malignant tumour using k = 3 is depicted in Figure 2.4.

d(s, p) =

√√√√ n∑
i=1

(si − pi)2 (2.1)

Figure 2.4: Example of a kNN classifier distinguishing between benign (blue
square) and malignant (red triangle) tumours for a test data sample (green
circle) using k = 3. The test sample is classified as malignant as there are
two red triangles and one blue square amongst the three neighbours. Figure
retrieved from T. Srivastava (https://tinyurl.com/y3jqco49).

kNN has been tested on datasets of mammograms such as the “Wiscon-
sin Breast Cancer Wisconsin” (WBCD) dataset, which contains ten extracted
features such as clump thickness, cell size/shape, etc. (Wolberg et al., 1995).
kNNs calibrated with k = 1 and using the Euclidian distance achieved 98.25%
accuracy (Sarkar and Leong, 2000) and 98.70% accuracy (Medjahed et al.,
2013) on the WBCD dataset when compared with other values of k ranging
from 1 to 15 and using other distance metrics such Cityblock distance, cosine
distance and correlation. Despite Sarkar et al. and Medjahed et al. reporting
that a value of k = 1 seemed to yield the most accuracy, these 1-NN classifiers
do not actually learn the data’s patterns and often underperform compared
to other classifiers mentioned below, especially compared to SVMs and ANNs
which can surpass accuracies of 99% (Yue et al., 2018; Asri et al., 2016; Mon-
tazeri et al., 2016). Nevertheless, the results achieved by kNN remain fruitful
when used as a primary benchmark before testing more advanced models, such
as the ones described below.

Naive Bayes

Naive Bayes uses Bayes’ theorem and the assumption that all input features
are independent from one another, which can be described as the input features

https://tinyurl.com/y3jqco49

CHAPTER 2. CONTEXT SURVEY 12

x = (x1, ...,xn) being independent given a class label C in Equation 2.2 (Rish
et al., 2001).

P (x|C) =
n∏

i=1

P (xi|C) (2.2)

This assumption leads to a naive model that despite not learning the data’s
underlying pattern (in a similar fashion to kNN), still offers competitive re-
sults in practice (Russell and Norvig, 2002), notably in the field of medical
imagery analysis (Rish et al., 2001). Naive Bayes achieves an accuracy of
93% on the WBCD dataset (Kharya et al., 2014), which is comparable to the
aforementioned 1-NN classifiers as it does not learn the data’s patterns and
use extracted features rather than the original mammograms. NB still remains
useful for assessing benchmark classification to compare with more advanced
models.

Decision Trees

Unlike kNN and NB, the decision tree algorithm is a simple yet powerful one
for fitting data. It works like a flowchart mapping samples’ input feature vec-
tors attributes and values, creating a tree made up of different types of nodes.
Each non-leaf nodes tests one of the feature vectors attributes, branching out
to a deeper node based on the attribute’s value. Once a leaf node is reached
after multiple tests, a classification decision is made (Quinlan, 2014). An ex-
ample of a decision tree applied to breast cancer detection can be found in
Figure 2.5, illustrating how attributes and their values are used to classify a
tumour as benign or malignant.

The most popular implementations of decision trees use entropy-based im-
purity metrics to generate the tree, such as the ID3, C4.5 and C5.0 decision
tree algorithms (Yue et al., 2018). A node reaches an entropy value of 0 when
it is “pure”, i.e. it contains only instances of one class (either only benign or
only malignant data samples).

The extra complexity offered by decision trees such as the C4.5 classi-
fier does do not offer improved results compared to kNN and NB classifiers,
with 94.56% achieved using J48 (Java implementation of C4.5) on the WBCD
dataset (Sumbaly et al., 2014), which is still falling short of the performance
achieved by SVMs and ANNs that exceed 99% (Yue et al., 2018). Never-
theless, inserting decision trees into hybrid systems by combining them with
other machine learning algorithms such as SVMs and NBs increases the accu-
racy to 97.13% on the WBCD dataset (Kumar et al., 2017), which is closer to
those achieved by SVMs and ANNs (Yue et al., 2018). Indeed, these hybrid
systems use the advantages of each method, cancelling out the negatives of

CHAPTER 2. CONTEXT SURVEY 13

Figure 2.5: Example of a decision tree classifier distinguishing between benign
and malignant tumours based on three extracted features from a dataset of
mammograms: the size of the bare nuclei, the thickness of the clump and the
uniformity of the cell size. Figure created by Yue et al. (2018).

each, but come at the cost of being complicated to engineer and still requir-
ing hand-crafted features to be fed to them as input, which is confirmed by
their decision of testing these algorithms on the WBCD dataset rather than
datasets containing raw images like DDSM.

Support Vector Machines

An SVM consists of a maximal margin classifier, which aims to find the hy-
perplane that separates two classes the most, and the kernel trick, used to
separate non-linear data. In Figure 2.6, a visual example of a maximum mar-
gin hyperplane for linearly separating benign and malignant tumours is shown.

In the case of non-linear data, the training data is mapped to a higher
dimension where they can be linearly separated. This is achieved by using
the kernel trick, which maps the input feature vector to a higher dimension
by using the dot product, but does not carry out the transformation, which
would exponentially increase the size of the feature space and consequently
the training time (Géron, 2019). This kernel trick is what allowed SVMs to
become one of the most widely used machine learning models in many fields,
including medical imagery analysis, up until today (Yue et al., 2018).

Many kernels can be chosen for SVM classification, ranging from Polyno-
mial kernel for image processing to Radial Basis Function (RBF) to Gaussian
kernels for general tasks when there is no prior knowledge of the data, heavily

CHAPTER 2. CONTEXT SURVEY 14

Figure 2.6: Example of a SVM classifier’s maximum margin hyperplane found
to separate benign and malignant tumours based on two extracted features
from a dataset of mammograms: the size of the bare nuclei and the uniformity
of the cell size. Figure created by Yue et al. (2018).

influencing its performance (Amari and Wu, 1999). For the task of breast can-
cer detection, RBF outperformed Polynomial kernels on two small datasets1

containing extracted features, with the RBF kernel managing 98.80% and
96.33% accuracies on both datasets while Polynomial reached 97.09% and
95% accuracies (Osareh and Shadgar, 2010), depicting why RBF is often cho-
sen over other kernels. Compared to the previously mentioned ML methods,
SVMs seem to learn the extracted features more efficiently, reaching 97.13%
accuracy on the WBCD, while kNN attained 95.27%, NB 95.99% and DT
95.13% (Asri et al., 2016).

When applied to datasets containing raw images such as CBIS-DDSM,
SVMs coupled with feature extraction techniques such as grey-level co-occurrence
matrices (GLCM) achieved 63.03% accuracy (Sarosa et al., 2018); while on
smaller datasets like mini-MIAS, SVMs coupled with texture-based features
extracted from pre-processed images resulted in 92% accuracy (Vishrutha and
Ravishankar, 2014). An accuracy of 97.2% was achieved using the simplest
form of SVMs on the WBCD dataset (Bennett and Blue, 1998), while 99.51%
accuracy was reached with SVMs on the same dataset when selecting the five
best features (Akay, 2009), clearly characterising the importance of feature
selection and image processing techniques for ML algorithms such as SVMs.

1“Fine needle aspirate of breast lesions” (FNAB) dataset and “gene microarrays” dataset
(Osareh and Shadgar, 2010).

CHAPTER 2. CONTEXT SURVEY 15

Artificial Neural Networks

ANNs form the basis of contemporary deep learning and are at the heart of
the techniques mentioned in Section 2.3. Originally inspired by the neuron
connections found in the human brain (McCulloch and Pitts, 1943), ANNs
correspond to a collection of neurons (units) that “fire” an output if the lin-
ear sum of its weighted inputs tops a threshold. These neurons are placed in
hierarchical layers (input, hidden and output layers) which are connected via
weighted links, leading to a fully connected neural network when all the neu-
rons from one layer communicate with all the neurons in the following layer.
Input layer neurons accept the feature vectors x, hidden layer neurons process
the data and output layer neurons represent an outcome for the classification
(Russell and Norvig, 2002). Each neuron’s output is determined by its activa-
tion function, which is usually a non-linear function like step, sigmoid, Tanh
or ReLU (chaining linear functions results in a linear function) (Litjens et al.,
2017). Figure 2.7 depicts an example fully-connected ANN used to classify
benign and malignant tumours using six input neurons, eight hidden neurons
and one output neuron.

Figure 2.7: Example of an ANN classifier distinguishing between benign and
malignant tumours based on six extracted features from a dataset of mammo-
grams. Figure created by Yue et al. (2018).

CHAPTER 2. CONTEXT SURVEY 16

Like the previous algorithms, neural networks learn by minimising the loss
L between the prediction ŷ and the labels y. This is done via the backprop-
agation algorithm (BP), which propagates the error from the output layer
back to the hidden layers for each sample, allowing the links’ weights to be
adjusted accordingly to minimise that error (Russell and Norvig, 2002). A
cycle of all the training samples is referred to as an epoch. The most common
way to do this is by using a loss function with Stochastic Gradient Descent
(SGD) (Litjens et al., 2017). This learning ability found in ANNs is what
gives them their potential, but also their complexity due to the large number
of hyperparameters used to fine-tune them and their capacity to overfit the
data when over-engineered. Indeed, combinations of neural networks hyperpa-
rameters may involve the network’s structure (number of layers and neurons
in each layer), the learning rate and momentum for SGD, the regularisation
techniques and parameters, the activation functions and the stopping con-
ditions to name a few (Scikit-Learn Documentation: Neural network models
(supervised), 2019).

Shallow ANNs, also referred to as Multi-Layer Perceptrons (MLP), imme-
diately showed promising results when first applied to breast cancer detection,
reaching 95.2% accuracy with only a basic 3-layer architecture using BP (Wu
et al., 1993), which already surpassed experts’ predictions by 3-5% accuracy
(Yue et al., 2018). However, due to computational constraints, deeper ANNs
containing more hidden layers could not be efficiently utilised until recent
years (Litjens et al., 2017). Instead, innovative variants to basic ANNs have
been used to reduce training times, deal with multi-class classification with
more ease, and yield predictions with higher accuracies. Some of these ANN
variants include networks such as Probabilistic Neural Networks (PNN) that
replace the standard sigmoid activation function with an exponential function
to find the training sample that is closest to the testing sample, achieving
97.23% and 93.39% accuracies on the two small datasets of extracted features
(mentioned in Section 2.2.2), which are larger than those achieved by kNN
and Polynomial SVMs (Osareh and Shadgar, 2010). Another approach con-
sisted of combining ANNs in hybrid systems (similar to those mentioned in
Section 2.2.2). When combined to Association Rule learning (AR) for reduc-
ing the number of features in the WBCD dataset from 9 to 5, ANNs and AR
reached 95.6% accuracy, which is extremely similar to the basic ANN on its
own, but in almost half the epochs, converging in 33 epochs rather than 61
epochs, thus considerably reducing training time (Karabatak and Ince, 2009).
Following that mindset of reducing the complexity of the WBCD dataset’s
features, Genetically Optimised ANNs (GOANN) use genetic programming
(an ML technique that evolves towards a solution based on Darwin’s Theory
of Evolution) to determine the best features to use from the WBCD dataset
and to optimise the network’s weights and structure, producing an impressive

CHAPTER 2. CONTEXT SURVEY 17

accuracy of 99.26% (Bhardwaj and Tiwari, 2015).

Supervised machine learning algorithms comparison

The five previously explored supervised machine learning algorithms all have
one commonality: they heavily rely on the quality of the features extracted
from the mammogram images as input to gain performance, and they cannot
make use of the raw mammogram image in 2D space as input. This is con-
firmed by the datasets used for the task of BCD, as only datasets containing
extracted features such as WBCD were used.

On their own, each algorithm showed limitations that prevent it from per-
forming well. However, combined to form hybrid systems (e.g. DT + SVM
+ NB or ANN + AR), their performance increased in the form of higher ac-
curacies or shorter training times, but so did their complexity to tune. It is
worth noting that the slight differences when using identical algorithms on the
same datasets can be due to the diverse training strategies involving unique
training/testing/validation splits, image pre-processing steps and number of
folds in cross-validation (Yue et al., 2018).

The next step for these supervised learning algorithms is to move away
from feature extraction and redirect the effort towards new models that can
automatically extract features from images rather than optimising and fine-
tuning the hyperparameters and training strategies of existing algorithms. The
most efficient way nowadays to achieve this is through Convolutional Neural
Networks (CNN), which ingest the raw mammogram images in 2D space rather
than extracted features or flattened images (transformed from 2D to 1D) where
all spatial information is lost.

2.3 CNNs & Deep Learning techniques

2.3.1 Convolution Neural Networks

Motivation for CNNs over traditional neural networks

CNNs are a type of neural network inspired by the human visual cortex, where
neurons have local receptive fields that only react to visual stimuli originat-
ing from a region of the visual field. The combination of all receptive fields
covered by overlapping neurons forms the whole visual field (Li and Allinson,
2008). This architecture makes them very efficient at performing complex
visual tasks, marked by the first milestone for CNNs with the LeNet-5 ar-
chitecture trained to recognise handwritten bank cheque digits (LeCun et al.,
1998).

CHAPTER 2. CONTEXT SURVEY 18

CNNs differ from traditional “shallow” ANNs as they are not fully con-
nected. Indeed, CNNs are partially connected, with neurons in one layer only
connected to a few neurons from the previous layer, meaning that they can
work with large images (Géron, 2019). CNNs nowadays can work with images
thousands of pixel large, including the ones found in mammogram datasets
described in Chapter 3, processing them much faster than traditional machine
learning methods. In a fully-connected neural network with only 100 neurons
in the first layer, a 1,000 x 1,000-pixel image would already have 100,000,000
connections2 in that first layer alone.

CNN structure

The structure of CNNs builds on top of the concepts of traditional ANNs by
piling stacks of convolutional layers and pooling layers that are followed by a
shallow ANN for classification (see Figure 2.8). The goal of the convolutional
and pooling layers is to reduce the input images into a form that is simple
enough to be processed by the fully connected layers, retaining only useful
information from the original image (Shen et al., 2017).

Figure 2.8: Example of a typical CNN adapted for multi-class breast cancer
detection. Figure adapted from S. Saha (https://tinyurl.com/y9mmosuq).

Convolution Layers Neurons in the first convolutional layers are only con-
nected to pixels in their receptive fields and not connected to every pixel in the
image. Similarly, neurons in deeper convolutional layers are only connected
to neurons in a small zone from the previous layer. This allows CNNs to first
focus on low-level features, which are progressively assembled into high-level
features as they get deeper. The more the receptive fields are spaced out (re-
ferred to as the stride), the smaller the next layer will be, thus considerably
reducing the complexity of the CNN (Shen et al., 2017). Convolution is the
mathematical operation that slides a moving a filter f over an image I to cal-
culate a weighted sum (see Equation 2.3, Szeliski (2010)). This 2D operation

21000 · 1, 000 = 1, 000, 000 px; 1, 000, 000px ·100 neurons = 100, 000, 000 connections.

https://tinyurl.com/y9mmosuq

CHAPTER 2. CONTEXT SURVEY 19

is possible in CNNs as layers are represented in 2D space and do not need
to be flattened into a 1D array like with traditional neural networks, thus
preserving the spatial information of images (Szeliski, 2010).

Î(x, y) = (I ∗ f)(x, y) =
∑
k

∑
l

I(k, l) · f(x− k, y − l) (2.3)

The weights of the neurons in convolutional layers correspond to the filters,
which are learned during the training phase by using optimisation techniques
such as gradient descent. These filters allow a layer of neurons to highlight
the areas of the image that activate the filter the most. As each layer has
multiple filters, different features can be simultaneously detected in the layer’s
input. The result of each filter on a convolutional layer’s input (the output
of the previous layer) corresponds to a feature map. These multiple feature
maps are all stacked together to form the convolutional layer’s output.

Pooling Layers Pooling layers are similar to convolutional layers as neu-
rons are only connected to neurons from a small region in the previous layer.
The difference is that this layer is not trainable as its neurons have no weights.
Indeed, it is only used to downsample the image as it traverses the network
to diminish the load on the GPU. It does so by calculating an aggregate of
its inputs based on a function, which can either be a maximum or an average
function (see Figure 2.9). Maximum pooling returns the maximum value of
the covered portion of the image, whereas average pooling returns the average
of all values. Maximum pooling is the preferred option in CNNs as it retains
the most robust features only and acts as a noise suppressant by discarding
noisy activations (Krizhevsky et al., 2012).

Other benefits of pooling layers are the lower memory usage and the num-
ber of trainable parameters linked to smaller images, and especially the invari-
ance it provides to the CNN as it will not break down when fed images that
contain features of different sizes than the ones seen in the training dataset
(Shen et al., 2017).

Fully connected layers & Activation functions Similarly to ANNs, ac-
tivation functions are used to connect the convolutional and pooling layers.
The most common activation function used in CNNs is the Rectified Linear
Unit (ReLU).

At the end of the stack of convolutional and pooling layers, a fully con-
nected MLP is placed. This dense neural network takes the flattened output of
the stacked convolutional and pooling layers (which are transformed from 2D
to 1D) and performs the classification tasks by using the features learned by
the convolutional layers in a condensed format. Depending on the number of

CHAPTER 2. CONTEXT SURVEY 20

Figure 2.9: Difference between max pooling and average pooling using a 2x2
window and stride 2 (left) to downsample an image (right). Figure adapted
from W. Ong (https://tinyurl.com/y25cke6l).

classes to predict, a softmax activation can be used for multi-class classification
or a sigmoid for binary classification.

CNN Architectures

Deep CNN models such as AlexNet and VGG, which have won the ImageNet
Large Scale Visual Recognition Challenge3 in 2012 and 2014, remain very pop-
ular nowadays, especially in domains like medical imagery analysis where ac-
curacies of 97.9% have been reached in BCD using VGG16 (Wang et al., 2016).

AlexNet is a CNN made up of five convolution layers that differs from
traditional CNNs as not all convolution layers are separated by pooling lay-
ers (Krizhevsky et al., 2012). VGG architectures followed this concept by
stacking multiple convolution layers with smaller filter sizes to pick up more
complex features. Multiple variants of VGG exist based on the number of lay-
ers (VGG16 has sixteen layers and VGG19 has nineteen layers), but due to its
depth, these takes a long time to train and run the risk of vanishing gradients
(Simonyan and Zisserman, 2014). These are caused by the backpropagration
algorithm coupled with gradient descent that lead to an exponentially smaller
gradient while going back up the initial layers, which eventually prevents the
network from learning as the weights and biases are no longer updated (Rus-
sell and Norvig, 2002). This problem does not occur in shallow ANNs.

3ImageNet challenge is a competition used to measure the performance of CNNs: http:
//image-net.org/.

https://tinyurl.com/y25cke6l
http://image-net.org/
http://image-net.org/

CHAPTER 2. CONTEXT SURVEY 21

More complex architectures were created subsequently to avoid creating
deeper networks, such as ResNet, which uses residual modules, GoogLeNet,
which uses inception modules, and MobileNet, which aims at maximising ac-
curacy with little computing resources available; but are not covered in this
context survey as efficiency gains is not an important factor in medical data,
only the accuracy of the predictions matters (Litjens et al., 2017).

2.3.2 Deep Learning Applications in Breast Cancer Detection

Main challenges

Implementing deep learning models requires lots of data to achieve acceptable
performance levels. However, labelled datasets are not always abundantly
available as they require large amounts of time and computing resources to
engineer large datasets with millions of images (Krizhevsky et al., 2012) like
ImageNet, which contains over 15 million high definition images from 15,000
different classes (Deng et al., 2010). With databases of mammograms barely
exceeding 10,000 images, one of the challenges of implementing a deep learning
CAD system is to gain access to the computing resources needed to process the
data and implement the model, as well as overcoming the problem of small
amounts of data while avoiding overfitting it. Overfitting occurs when the
model learns the data too well (e.g. detail and noise) and does not generalise
well to new cases as it only recognises cases it has seen (Dietterich, 1995).

Transfer learning

A commonly used deep learning technique when only a little amount of data is
available is transfer learning, which makes use of CNN models pre-trained on
large general datasets. The knowledge gathered by high-performing CNNs in
other general domains that have larger datasets can be transferred to a related
domain such as medical imagery (Falconi et al., 2019).

These models are designed to classify millions of images across thousands
of different classes and can easily be adapted to any classification task by
replacing the dense output layer that makes the actual prediction with a
layer containing one neuron per class to predict. Falconi et al. demonstrated
how transfer learning from general domain datasets such as ImageNet could
be transferred to the domain of mammograms using datasets such as CBIS-
DDSM, reaching accuracies of 78.4% with the ResNet-50 model (Falconi et al.,
2019).

Shen et al. showed how using common CNN architectures such as VGG or
ResNet pre-trained on ImageNet resulted in accuracy increases. For instance,
the accuracy improves by 2-27% based on the number of patches used (Shen

CHAPTER 2. CONTEXT SURVEY 22

et al., 2017), while Diaz et al. demonstrated how two ResNet-50 models were
tested with different weight initialisation: one on ImageNet weights and the
other with random weights using the CBIS-DDSM dataset. The model using
transfer learning achieved 84% accuracy compared to 75% accuracy (Diaz
et al., 2018), clearly depicting the advantage of using CNNs with pre-trained
weights.

Regularisation techniques

The drawback of the power showcased by deep neural networks such as CNNs
is their tendency to overfit the data. To this end, new regularisation techniques
were introduced to prevent overfitting.

Figure 2.10: Example of transformations applied to a mammogram to generate
new images. Original image retrieved from the mini-MIAS dataset (Suckling,
1994).

Data augmentation Another technique to counter small datasets is data
augmentation, often used when attempting to learn a small dataset using com-
plex deep learning models that have a large number of parameters, which may
naturally lead to overfitting (Jadoon et al., 2017). The data is “augmented”
by artificially creating similar realistic variants of the images found in the
training set, considerably increasing the training set size. A varying amount
of transformations can be applied to each image such as translation, rotation,

CHAPTER 2. CONTEXT SURVEY 23

scaling, shear, horizontal/vertical flips, brightness and contrast increases (see
Figure 2.10) (Hepsaǧ et al., 2017). Chen et al. show how applying data aug-
mentation using affine transformations increases the accuracy from 83.6% to
88.14% using a ResNet-50 model (Chen et al., 2019).

Dropout Simply implementing dropout, the most popular regularisation
technique for deep neural networks, in any CNN has been proven to boost the
accuracy by 1 to 2% (Géron, 2019) at the cost of training time, even for state-
of-the-art neural networks tested on large datasets like ImageNet (Srivastava
et al., 2014). Despite training times being increased by 2 to 3 times, the gains
in accuracy compensate for the extra time required to train the models imple-
menting dropout.

Dropout works by randomly ignoring neurons in any layer (except the
output layer) during the forward and backward passes of training, including
its input and output connection weights, which helps prevents neurons from
co-adapting too much with their neighbours and overfitting the data as they
now have to be useful on their own. Essentially, new thinner networks are
created at each training step (see Figure 2.11), and identical networks will
never be sampled in the same training phases as there are 2N possible networks,
where N is the number of dropable neurons. The number of neurons dropped
in a layer is controlled by the dropout rate hyperparameter p, dictating the
probability of a neuron being dropped. During testing, the neurons are no
longer dropped, and an averaged ensemble of all the thinner trained networks
is used. This leads to models that generalise better thanks to neurons that are
less sensitive to noise and small changes in the input (Srivastava et al., 2014).

Figure 2.11: Example of standard neural network (left) and a neural network
with dropout applied (right). Figure retrieved from Srivastava et al. (2014).

CHAPTER 2. CONTEXT SURVEY 24

Technological advances

The main contributor to the rise of deep learning is linked to the large scale
spread and availability of Graphical Processing Units (GPU) in recent years.
GPUs are much more powerful than the general-purpose Central Processing
Units (CPU), as they can process large amounts of data in parallel. Initially
designed for computer graphics in video games, GPUs are extremely efficient
for large-matrix operations, rendering them vital in the field of deep learning
(Caulfield, 2009). GPU-computing libraries such as CUDA or OpenCL make
it possible to use the processing power of GPUs, leading to computing times
that are 10 to 30 times faster than CPUs (Litjens et al., 2017).

However, GPUs are complicated to use efficiently from a low-level perspec-
tive, which is why the collection of open-source software libraries available
online has been essential for the rise of deep learning. These libraries allow
high-level GPU-efficient implementations of the most important deep learning
methods and operations, allowing focus to be placed on efficiently implement-
ing deep learning pipelines rather than low-level GPU optimisations (Litjens
et al., 2017). The most popular packages nowadays include Tensorflow (Abadi
et al., 2015) coupled with Keras (Chollet et al., 2015) and PyTorch (Paszke
et al., 2019).

Implementing CNNs entails another drawback linked to the memory re-
quirements (RAM) and the use of GPUs. Indeed, input data, neuron weights
and biases all need to be stored in memory as the data propagates through the
neural network, especially during training as the data needs to be retained dur-
ing backpropagation to calculate the error gradients (Géron, 2019). For GPU
optimisation, this data is formatted as dense vectors for parallel processing
optimisations, which can increase local RAM requirements to over 7.5GB for
a CNN like ResNet-50 (Hanlon, 2016).

Without the rise of popularity in both GPUs and software libraries to
take advantage of the additional processing power offered by GPUs, and the
increase in other computing resources such as the amount of GPU and RAM,
deep learning would not have been successfully applied to fields such as medical
imagery analysis nowadays.

2.4 Summary

CAD systems have been developed since the 1970s to assist radiologists in
their interpretations of mammograms, starting with primitive expert systems.
These systems were replaced by supervised machine learning algorithms but
required hand-crafted features to be extracted from the images. The perfor-

CHAPTER 2. CONTEXT SURVEY 25

mance of the algorithms heavily relied on the quality of the features, which
could not operate on raw mammograms. Therefore, deep learning algorithms
have gained traction recently, notably CNNs, to automatically learn which
features to extract from the images, thus preserving their 2D spatial property.
However, CNNs require large amounts of data to avoid overfitting, which is
not always available, especially in medical imagery.

Chapter 3

Ethics & Datasets

3.1 Ethical Considerations

The deep learning model aimed to be implemented during this project will
require real-life data to learn the underlying patterns in order to be able to
detect cases of breast cancer in mammograms and to evaluate its performance.
Therefore, the main ethical concern when using sensitive medical data such
as mammograms is whether it can be traced back to the original patient. As
a result, fully anonymous, open-source and public datasets are used. A full
Ethics Application to the University of St Andrew’s Teaching and Research
Ethics Committee was therefore submitted at the early stages of the project
and later approved. The approval letter from the committee can be found in
Appendix A.

3.2 Datasets Description

Three open-sourced, anonymised public datasets have been approved by the
University of St Andrew’s Teaching and Research Ethics Committee for use
in this project; the DDSM, CBIS-DDSM and mini-MIAS datasets.

3.2.1 DDSM

The “Digital Database for Screening Mammography” (DDSM) dataset is a
dataset initially released in 2007 and available online from the University of
Florida. It holds 2,620 scanned film mammographies of normal, benign and
malignant cases, all stored in Lossless JPEG format (LJPEG), which is obso-
lete nowadays (Heath et al., 2001).

26

CHAPTER 3. ETHICS & DATASETS 27

3.2.2 CBIS-DDSM

The “Curated Breast Imaging Subset of DDSM” (CBIS-DDSM) dataset (Lee
et al., 2017) is available online from The Cancer Imaging Archive (Clark et al.,
2013). The dataset contains a total of 10,239 images in Digital Imaging and
Communications in Medicine format (DICOM) gathered from 1,566 patients
across 6,775 studies (Lee et al., 2017). This dataset is an updated and stan-
dardised subset of the older DDSM dataset (Heath et al., 2001), containing
only abnormal cases with benign and malignant tumours (no normal cases).

Figure 3.1: Types of structures and views captured by the CBIS-DDSM
dataset (CC and MLO mammogram views are from the same patient).

The scans are a mix of the two most commonly used projections in rou-
tine mammogram X-ray scans: bilateral craniocaudal (CC) and mediolateral

CHAPTER 3. ETHICS & DATASETS 28

oblique (MLO) (Elter and Horsch, 2009). The dataset can be further be sepa-
rated into two different types of structures that radiologists usually look for to
detect early signs of breast cancer: calcifications (small flecks of calcium usu-
ally clustered together) and masses (e.g. cysts or lumps) (What Mammograms
Show: Calcifications, Cysts, Fibroadenomas, 2018). Figure 3.1 illustrates the
different type of mammograms found in the dataset.

3.2.3 mini-MIAS

The “mini Mammography Image Analysis Society” dataset (mini-MIAS) is a
smaller dataset of mammograms containing 322 images in greyscale Portable
Gray Map (PGM) format with associated ground truth data (Suckling, 1994)
and images all reduced to a uniform size of 1024 x 1024 pixels (Vishrutha and
Ravishankar, 2014). The dataset contains three different types of mammo-
grams: glandular dense, fatty and fatty glandular (see Figure 3.2), which are
further divided into normal, benign and malignant cases (Hepsaǧ et al., 2017).

Figure 3.2: The three different types of breast background found in the mini-
MIAS dataset.

Chapter 4

Design

Based on the machine learning and deep learning applications for the task of
breast cancer detection established in Chapter 2, and the datasets available for
this project, design decisions specific to the deep learning pipeline implemen-
tation will be covered, along with the reasoning behind the choice of datasets
to use and general considerations.

4.1 Datasets Decision

An early design decision taken as a group consisted of electing which datasets
to use. Despite being widely used in existing literature, popular feature-based
datasets containing extracted mammogram data such as the WBCD dataset
(Wolberg et al., 1995) will not be used, as the objective of using deep learning
models such as CNNs is to learn which features to extract by using the raw
image in 2D space rather than data flattened into 1D arrays. If extracted
features such as the ones from WBCD were used, then already successful ma-
chine learning algorithms such as SVMs or DTs could be used instead of deep
learning techniques.

From a clinical point of view, the mini-MIAS dataset is interesting as it
contains both abnormal cases and normal cases, resulting in three classes (nor-
mal, benign and malignant cases). Its smaller size makes it useful for initial
prototyping but has the downside of requiring more image processing tech-
niques such as data augmentation to generate enough data to feed into the
deep learning model. Additionally, the CBIS-DDSM dataset was chosen over
the DDSM dataset as it is an updated version of the older DDSM dataset, and
is curated by a trained mammographer. Additionally, it uses uncompressed
images in DICOM format rather than LJPEG format, which is a deprecated
format nowadays, resulting in much higher quality imagery. Indeed, the large
uncompressed format offered by DICOM means that the mammograms can be
fed into the CNN with larger sizes, allowing the model to potentially learn more

29

CHAPTER 4. DESIGN 30

low-level features. Another plus is that the dataset is already split into train-
ing/testing sets, allowing for accurate performance comparisons with other
papers using the same dataset.

4.2 Deep Learning Pipeline Design Analysis

The deep learning pipeline implemented for the task of breast cancer detection
can be broken down in four distinct phases, which are condensed in Figure 4.1:

• Data pre-processing: loading a dataset in memory and processing it
to gather image-label pairs for the classification task.

• Model training: creating a CNN model that can fit the data to learn
the training set samples. Predictions are carried out once the model
finishes training on the validation and test sets.

• Result visualisation: the model’s performance is evaluated by calcu-
lating various metrics and plotting predictions.

• Fine tuning: a bag-of-tricks approach is used, experimenting with var-
ious deep learning techniques.

Figure 4.1: A high-level flowchart of the breast cancer detection deep learning
pipeline to implement, separated into data pre-processing, model training,
results visualisation and fine-tuning.

4.2.1 Data Pre-Processing

Dataset balance

As this is a classification task, it is essential to visualise the datasets’ class
distribution to determine whether some classes are much more frequent than
other classes (skewed datasets) (Géron, 2019).

CHAPTER 4. DESIGN 31

(a) mini-MIAS class distribution. (b) CBIS-DDSM class distribution.

Figure 4.2: Class distribution for the mini-MIAS and the CBIS-DDSM
datasets.

The class distributions plotted in Figure 4.2 reveal that the mini-MIAS
dataset is heavily imbalanced as the distribution is not uniform, which must be
taken into account to avoid training a biased CNN model. Potential solutions
to counter this imbalance would be to either:

• undersample the dataset by dropping images altogether;

• oversample the dataset, which can be achieved via data augmentation,

• include class weights to give more importance to under-represented classes.

Undersampling the dataset can be considered inefficient as it will diminish
the number of samples the model could learn from by dropping samples from
the majority class (Liu et al., 2009). As the datasets are already very small,
undersampling them would be a poor strategy as it may discard useful features
that could be learned. Consequently, oversampling by creating new artificial
images resembling the original data is a viable solution as it was proven to
increase accuracies. Alternatively, a cheaper option in terms of computing
power that does not require the dataset to be touched would be to add class
weights, which will cause the loss to become a weighted average giving more
importance to less frequent classes (Zhu et al., 2018).

Dataset split

The dataset is immediately split between a training set and a testing set to
avoid any form of data snooping, which corresponds to the poor practice of
making design decisions (either voluntary or involuntary) after having viewed
the data and detecting patterns that could lead to favouring certain models or
hyperparameters above others. Due to the small size of the datasets used and
to avoid causing further imbalance to the datasets, the splits are stratified to
maintain representative samples from the data in both the training and the

CHAPTER 4. DESIGN 32

testing sets to avoid introducing sampling bias.

An 80%/20% split, often used in machine learning and seen in breast can-
cer detection papers (Yue et al., 2018), is used to split the mini-MIAS dataset.
The CBIS-DDSM does not need to be manually divided as it was already split
with the appropriate stratification when it was designed (Lee et al., 2017).
After this step, only the training set is utilised until the final results evalua-
tions. The testing set is placed aside and forgotten about to avoid any form
of cheating.

The assumption that the data never changes during the development of
the project is made through a fixed random number generator seeds (see Sec-
tion 5.2.2). Not using a random generator with a fixed seed would cause
different samples to be extracted into the training and testing sets every time
the code is executed, thus neglecting the results.

Data loading

The mini-MIAS dataset is very small in size (339 Mb before pre-processing,
202 Mb after pre-processing), containing only 322 images. It can therefore
be loaded into memory without any data loading optimisation techniques.
However, the CBIS-DDSM dataset is much larger, containing 10,239 images
that cover 163.6 Gb of disk space. The dataset therefore cannot be loaded in
memory in a single import and needs to be loaded in batches to be fed into
the CNN sequentially.

Data normalisation

Images are resized to a target size during import to scale them down (CBIS-
DDSM images are larger than 3000 x 5000 pixels) and to avoid having incon-
sistent input sizes. Observing the pixel intensities of the images found in the
datasets reveal that they correspond to integers ranging from 0 to 255. How-
ever, because the weights in neural networks are small, having such large input
values can disrupt and slow down the training process, ultimately leading to
lower accuracies. Therefore, normalising the pixel intensities to values in the
range of 0 to 1 can help fight this problem by ensuring all values are small.
An example of the pixel values before and after normalisation can be seen in
Figure 4.3.

CHAPTER 4. DESIGN 33

Figure 4.3: Example of the pixels values that make up a mammogram before
and after normalisation.

Label encoding

As the labels for each mammogram are in categorical string format, they must
be encoded into a numerical format. On the one hand, due to the sparse nature
of the labels (only three categories), one-hot encoding is chosen for the mini-
MIAS dataset, where a single digit may have the value 1 while the others
remain at value 0 to tell apart the different labels. The one-hot encodings of
the labels can be seen in Table 4.1.

Categorical format One-hot encoding

Normal 1 0 0

Benign 0 1 0

Malignant 0 0 1

Table 4.1: Conversion from string format (categorical) to one-hot encoding.

On the other hand, in the case of binary datasets like CBIS-DDSM, binary
encoding can be used instead of one-hot encoding, as seen in Table 4.2.

CHAPTER 4. DESIGN 34

Categorical format Binary encoding

Benign 0

Malignant 1

Table 4.2: Conversion from string format (categorical) to binary encoding.

4.2.2 Model Training

At this stage, the training data is ready to be fed into the CNN model. The
classification models will learn the processed images from the training set
loaded in memory before making their predictions, which will be compared
with the ground truth labels for evaluation.

CNN model

Due to the small nature of the CBIS-DDSM and mini-MIAS datasets used,
state-of-the-art CNN models pre-trained on large general datasets like Ima-
geNet are used rather than creating a CNN from scratch, a technique known
as transfer learning (see Section 2.3.2) that is proven to work on breast cancer
detection tasks (Shen et al., 2017; Falconi et al., 2019).

Different CNN architectures can be used as the base of a custom CNN
model tailored for breast cancer detection. This is achieved by using popu-
lar CNN architectures available with Keras such as VGG19, ResNet50, In-
ceptionV3, DenseNet121 and MobileNetV2 as the base of the CNN (Keras,
2020). The fully connected layers of these models, originally designed for gen-
eral classification of 1,000 different categories, are dropped from the model and
replaced with a custom MLP (Krizhevsky et al., 2012). The fully-connected
MLP contains hidden layers and an output layer with different activation func-
tions based on the dataset used.

If large images are used, then additional convolutional and pooling layers
are added before the base model to downsample the image to smaller sizes and
learn low-level features, followed by the pre-trained base model, a flatten layer
to convert the output from 2D to 1D, and finally the MLP which will make
the final prediction. Dropout layers are added in the MLP to avoid overfitting.
The full model can be visualised in Figure 4.4.

Data fitting

Activation functions Different activation functions can be used in the out-
put layer of the CNN (see Figure 4.5). Typically, a single neuron with a sigmoid
activation function is used for binary problems as it outputs an independent
value between 0 and 1 that can be interpreted as a probability of the positive

CHAPTER 4. DESIGN 35

Figure 4.4: CNN architecture used. VGG19 image retrieved from https:

//tinyurl.com/rpp49oc.

class. Inversely, a softmax activation function transforms the output of the
last hidden layer into probabilities for each class that sum up to 1 (Litjens
et al., 2017). These probabilities are dependent of each other, as each sample
must belong to one class only, making it perfect for multi-class classification
of breast mammograms (each sample can only be either normal, benign or
malignant, therefore to increase the probability of one class, it must decrease
it for another).

Figure 4.5: Visualisation of the sigmoid and softmax activation functions.

Resultantly, the output layer will use a sigmoid with the CBIS-DDSM
dataset, and a softmax with the mini-MIAS dataset.

Loss function Cross entropy is one of the most commonly used loss func-
tions as it can be used for both binary and multi-class tasks (Litjens et al.,
2017). Because probabilities are being estimated through the sigmoid and soft-
max activation functions, cross entropy is the ideal loss function as it heavily

https://tinyurl.com/rpp49oc
https://tinyurl.com/rpp49oc

CHAPTER 4. DESIGN 36

penalises the model when a low probability is predicted for the target class
(Géron, 2019).

Optimiser Due to the deep nature of the model, it is important to minimise
the number of hyperparameters to control. Adaptive learning rate algorithms
usually generalise better than traditional optimisers like SGD or momentum,
which are slow to converge and require more fine-tuning. The most general
adaptive optimiser is adaptive moment estimation (Adam), which combines
both momentum for more significant steps in the direction of the steepest
gradient and Root Mean Square Prop (RMSProp) for more accelerating on
steep slopes than small slopes, making it the best choice for this model.

Transfer learning training To best make use of the transfer learning tech-
nique with the base model’s weights instantiated using ImageNet weights,
training is separated into two phases:

1. All the layers from the base model are frozen, enabling only the custom
MLP with fully connected layers to fit the mammogram images. The ini-
tial training phase ends once the maximum number of epochs is reached,
or the early stopping condition is met.

2. All the layers are unfrozen, and training is resumed with a lower learning
rate 0.00001, allowing the base model to slightly alter its weights to
adapt to the mammogram dataset while not forgetting the ImageNet
knowledge.

Validation set & early stopping To ensure that the model generalises
well to unseen data from the testing set, the training set is further split to
form a validation set using a 75%25% split on training set; resulting in a
60%/20%/20% of the full dataset. The validation set is used to make pre-
dictions at the end of each epoch by calculating the loss and accuracy. The
validation loss is then monitored to stop the training before the maximum
number of epochs is reached if the loss does not improve after a certain num-
ber of epochs, preventing the model from overfitting the data too much.

Due to time constraints, k-fold cross-validation, which divides the training
set into K subsets and evaluates the model K times, cannot be used as training
the model on the CBIS-DDSM dataset already takes between 1h15m-8h49 (see
Chapter 6), which would be multiplied by a factor of K using cross-validation.
Therefore, a validation set is used instead.

Fine-tuning Traditionally, a grid search approach would have been pre-
ferred to fine-tune the model’s hyperparameters. However, due to the sig-
nificant training runtime and the number of hyperparameters to fine-tune, a

CHAPTER 4. DESIGN 37

grid search would have been unrealistic given the time frame of the project.
Additionally, two attempts at implementing grid search were unsuccessful, as
a known bug on the Keras wrapper for Scikit-Learn prevented the use of the
GridSearch class, and Optuna was incompatible with the current version of
Tensorflow I/O being used.

Instead, a bag-of-tricks approach is selected, manually trying different
deep learning techniques mentioned in this chapter such as using different
pre-trained CNN models, amounts of transfer learning, amounts of data aug-
mentation, dropout values and input image sizes.

4.2.3 Result Visualisation

The following terminology is used to define the metrics used below:

• TP: True Positives (positive case correctly predicted as positive);

• TN: True Negatives (negative case correctly predicted as negative);

• FP: False Positives (negative case incorrectly predicted as positive);

• FN: False Negatives (positive case incorrectly predicted as negative).

Overall accuracy

The imbalanced class distributions (see Section 4.2.1) must be taken into ac-
count when analysing the classifiers’ scores. Indeed, using an evaluation metric
such as overall accuracy (see Equation 4.1, Falconi et al. (2019)) would be mis-
leading as it would not be representative of how well the classifier fitted the
data. Additionally, in breast cancer detection, detecting FPs and FNs is pri-
mordial to avoid interpreting malignant tumours as benign and vice versa,
an interpretation which could harm the patient and eventually lead to their
death.

Accuracy =
TP + TN

P +N
(4.1)

For instance, if a dumb classifier that always classifies an image as “normal”
is created, it would achieve 64.28% accuracy on the mini-MIAS dataset despite
never picking up abnormal cases. Therefore, a mixture of additional metrics
should be used to assess how well the model learns the mammograms data
and generalises to unseen cases.

CHAPTER 4. DESIGN 38

Precision & recall

Precision corresponds to the number of correct positive predictions (see Equa-
tion 4.2, Liu et al. (2009)), showing the model’s ability to avoid labelling
negative instances as positive.

Precision =
TP

TP + FP
(4.2)

Recall is the number of positive instances that are correctly predicted (see
Equation 4.3, Liu et al. (2009)), showing how well the model can find all
positive instances.

Recall =
TP

TP + FN
(4.3)

F1 score

Together, precision and recall can be combined into a more concise metric,
the F1 score, which corresponds to the harmonic mean of precision and recall
(see Equation 4.4, Géron (2019)). To achieve a high F1 score, both precision
and recall must be high (unlike a regular mean) because as the precision goes
down, the recall goes up, and vice versa, making the F1 score a reliable metric
for evaluating a classifier since a balance between precision and recall must be
found (Géron, 2019).

F1 =
2

1
precision + 1

recall

=
TP

TP + FN+FP
2

(4.4)

Confusion matrix

This visual metric plots the number of predictions made for each class for
each possible class in a table, with each row corresponding to the actual labels
and each column corresponding to a prediction. It is beneficial for detecting
which actual classes are being detected the most, and what predicted classes
are being misclassified as (Bhardwaj and Tiwari, 2015; Liu et al., 2009). To
further highlight the misclassifications and compare predictions with other
classifiers, the confusion matrices are normalised to show a percentage rather
than a count.

4.3 General Design Decisions

4.3.1 Programming Language

Multiple languages, including Python, Java, R and Javascript, are considered
for this project. Ultimately, Python is chosen for this project due to the

CHAPTER 4. DESIGN 39

familiarity and experience with the language; and the availability of open-
source libraries for implementing common machine learning functionalities, as
well as data pre-processing, manipulation and visualisation techniques found
in deep learning systems to avoid manually implementing them (Raschka and
Mirjalili, 2017), such as Tensorflow (Abadi et al., 2015), Keras (Chollet et al.,
2015), SciKit-Learn (Pedregosa et al., 2011), Pandas (pandas development
team, 2020), Matplotlib (Hunter, 2007), NumPy (Oliphant and developers,
2020) and Seaborn (Michael, 2020). Refer to Appendix B.1 for a deeper review
of the main pros and cons considered.

4.3.2 Deep Learning Framework

Due to the vast nature of the datasets and complexity of the deep learning
models to implement, powerful computing resources will be used in the form
of Graphical Processing Units (GPU). A GeForce GTX 1060 6GB is provided
by the School of Computer Science and remotely accessed via SSH to a lab
machine equipped with the GPU in question running on CentOS.

To make use of the GPU’s computing capabilities, deep learning frame-
works with CUDA support (for parallel computing and GPU optimisations),
CNN support and pre-trained models should be used. The two most popular
deep learning frameworks nowadays are Tensorflow coupled with Keras, and
PyTorch. Tensorflow/Keras being relatively older than PyTorch, have got
more online support, which is confirmed by the number of daily downloads
Keras has compared to PyTorch (ten times more), as well as the number of
mentions in academic papers (see figures in Appendix B.2), making them the
selected deep learning library.

4.3.3 Interface

A Command-Line Interface (CLI) is selected, allowing arguments and flags to
be passed to execute different sections of the code. Arguments control the
dataset to use, the CNN model, and the mode to run in (training or testing).
Flags control the verbose mode to print more statements in the terminal for
debugging purposes. The full set of instructions to run the code can be found
in Appendix C.

4.4 Design Decisions Summary

1. Datasets:

• CBIS-DDSM (binary classification)

• mini-MIAS (multi-class classification)

CHAPTER 4. DESIGN 40

2. Data pre-processing steps:

• 60/20/20% train/test/validation splits

• Data augmentation

• Image normalisation

• One-hot encoding (CBIS-DDSM) and binary encoding (mini-MIAS)

3. Model training:

(a) Base model: VGG19, ResNet50, InceptionV3, DenseNet121 and
MobileNetV2

(b) Output layer activation function: softmax (CBIS-DDSM) and sig-
moid (mini-MIAS)

(c) Optimiser: Adam

(d) Loss function: Cross entropy

(e) Transfer learning

(f) Generalisation to unseen data: validation loss and accuracy early
stopping

(g) Fine-tuning: bag-of-tricks approach

4. Evaluation Metrics:

(a) Numerical metrics:

• Overall accuracy

• Precision & recall

• F1 score

(b) Visual metrics:

• Confusion matrices (counts)

• Normalised confusion matrices

5. Programming language:

(a) Python 3.7

(b) Open-source frameworks:

• Tensorflow & Keras

• Scikit-Learn

• NumPy, Pandas, MatplotLib & Seaborn

6. Interface: Command-Line Interface

Chapter 5

Implementation

The implementation of the breast cancer detection system was conducted in
two parts. The first part corresponds to a common pipeline developed in
group (Jaamour et al., 2020a), and the second part to individual extensions
and implementations (Jaamour et al., 2020b). An overview of the different
pipeline parts can be found in Section 5.6, while meeting minutes with the
work distribution during the implementation of the common pipeline can be
found in Appendix E.

5.1 Code Design

The code, stored in the src directory, is designed by being split into functions
spread across multiple python modules, which are all organised into different
directories based on the kind of task they are designed to carry out (see Ap-
pendix F).

Flow of execution The program entry point is in the “main.py” mod-
ule, which parses command-line arguments used to execute different parts of
the program (e.g. which dataset to use) and stores them in “config.py”. The
main flow of the pipeline is controlled in “main.py”, enclosing calls to different
functions for processing the data, creating the CNN models and evaluating the
results based on the CLI arguments selected.

Data pre-processing Functions linked to data pre-processing, such as
retrieving image paths and labels, processing images, encoding labels, load-
ing the data into memory and applying transformations for data augmenta-
tion, are all located in the data operations directory. The one-time scripts
for initially parsing the images’ paths and labels for each dataset are in the
dataset processing scripts directory.

CNN Model All CNN-related code, from creating the Keras model to

41

CHAPTER 5. IMPLEMENTATION 42

compiling it, fitting it, making predictions or evaluating it is placed in a cus-
tom CNN Model class, which can be found in the cnn models.py module. Each
model is then placed in individual modules in the cnn models directory.

Results visualisation Functions handling result visualisations in the
form of plots and CSV reports are all situated in the data visualisation direc-
tory. Each figure and CSV report is saved in an output directory, while model
weights are stored on an external filesystem (BigTMP) due to their large size.

Other General functions for printing information in the terminal and com-
mon operations are all located in the utils.py module, while global command-
line arguments used throughout the code are all stored in the config.py module.

5.2 General

5.2.1 Command-Line Interface

Python’s argparse module is used to implement the CLI application, accept-
ing different arguments (e.g. dataset, type of mammogram, CNN base model,
learning rate, batch size, maximum number of epochs, etc.) that are used
across the pipeline to execute different sections of the code or use different hy-
perparameters (see Appendix C.2). The values passed through the command-
line are then stored as variables in the config.py module.

5.2.2 Results reproducibility

To reproduce results across different runs, random number generators are
seeded with an identical value. The NumPy and Tensorflow seeds are both set
to 111, as well as functions that include randomness such as the dataset splits
to ensure that constant shuffle indices are used (Scikit-Learn’s train test split)
and the dropout layer to ensure that the same random neurons are dropped:

Random number gene ra to r s .
numpy . random . seed (c on f i g .RANDOMSEED) # NumPy
t f . random . s e t s e e d (c on f i g .RANDOMSEED) # Tensorf low

Dataset s p l i t s .
, , , = t r a i n t e s t s p l i t (dataset , l ab e l s , t e s t s i z e =0.25 ,

s t r a t i f y=l ab e l s , random state=con f i g .RANDOMSEED, s h u f f l e=True)

Dropout l ay e r .
f u l l y c onn e c t ed . add (Dropout (0 . 2 , seed=con f i g .RANDOMSEED))

CHAPTER 5. IMPLEMENTATION 43

5.3 Data Pre-Processing

5.3.1 Initial Dataset Processing

When downloaded, both datasets contain nested directories with the mam-
mogram images and CSV files mapping images to their label, along with ad-
ditional unrequired information (e.g. breast densities or mass shape). Two
distinct Python scripts are written to parse these CSV files.

mini-MIAS The data is first cleaned by replacing empty cells with the
“N” character for normal cases (only benign and malignant cases are specified
initially), and each image is converted from PGM to PNG format before being
saved in labelled directories rather than one vast directory.

CBIS-DDSM Mass and calcification mammograms are grouped into the
same set by creating a new CSV file for training and testing data containing
the image name, its path and its label. The CBIS-DDSM dataset is not stored
locally as its size exceeds 160GB, and is therefore stored on BigTMP, a 15TB
filesystem that is mounted on the Centos 7 computer lab clients.

5.3.2 Data Loading

The data is loaded by parsing the generated CSV files mentioned above, load-
ing mammogram-label pairs simultaneously. In the case of the CBIS-DDSM
dataset, a Tensorflow Dataset is used to handle its large size by loading con-
secutive images into batches and caching the loaded data. This process is
optimised by importing the data with parallel optimisations through Keras’
prefetch method and the data.experimental.AUTOTUNE option.

5.3.3 Data Processing

Image processing The mini-MIAS mammograms are first imported through
Keras’ load img function in Python Imaging Library (PIL) format and resized
to a target size (e.g. 224 x 224 pixels) in greyscale (single channel) before
being converted to array format using the img to array function to be com-
patible with the Keras CNN models expected input. Additionally, if the roi
flag is True, then the images are cropped around a 224 x 224 ROI (Region
of Interest) in the presence of an abnormality; otherwise around a 224 x 224
region in the centre of the image.

The images are then normalised by dividing their pixel intensities by 255.
Because the CBIS-DDSM mammograms are in DICOM format, they first need
to be imported as raw bytes before being decoded using Tensorflow I/O’s

CHAPTER 5. IMPLEMENTATION 44

decode dicom image function. The image is then converted to PNG before
following the same process as the mini-MIAS images.

Label encoding In the case of multi-class classification, Scikit-Learn’s La-
belEncoder class is used to one-hot encode labels, whereas Keras’ to categorical
function is used to convert labels to a binary class matrix in the case of binary
classification.

5.3.4 Dataset Splits

Scikit-Learn’s train test split function is used to split the dataset into train-
ing, validation and testing sets with 60/20/20% shuffled stratified splits (see
Figure 5.1).

Figure 5.1: Original dataset divided into training, validation and testing sets
using a 60/20/20% split.

5.3.5 Data Augmentation & Class Balance

For the highly imbalanced mini-MIAS dataset, image augmentation is used
to balance the class distribution. Random amounts of rotations and shears
between -20 and 20 degrees, noise and horizontal flips are added through the
Scikit-Image library to existing images of the minority classes to balance the
dataset. An integer variable is used to control the augmentation factor. These
are then shuffled to ensure that newly generated images are not grouped to-
gether. An example of the possible transformations is shown in Figure 5.2.

A computationally-cheaper alternative consists of calculating class weights
to balance the classes, giving larger weights to the minority class and smaller
weights to the majority class. For example, in the case of the CBIS-DDSM

CHAPTER 5. IMPLEMENTATION 45

Figure 5.2: Example of affine transforms applied to mini-MIAS mammograms
to generate new samples. Original image retrieved from the mini-MIAS dataset
(Suckling, 1994).

dataset (see Section 4.2.1), a weight of 0.907 can be used for benign sam-
ples and 1.113 for malignant samples to balance the dataset. These weights
are calculated by using Scikit-Learn’s compute class weights function with the
“balanced” argument.

5.4 Model Training

5.4.1 Sequential Model

The CNN model is created in Keras through the custom Cnn model class.
The Keras Sequential class is used to create the CNN model described in
Section 4.2.2 by linearly stacking layers on top of one another. The input layer
size is first specified to match the target size chosen in the pre-processing steps.
Because a CNN pre-trained on ImageNet with RGB images (three channels)
is used, the greyscale images have to be concatenated into a triple channel
greyscale input:

img input = Input (shape=(con f i g . IMG SIZE ['HEIGHT'] , c on f i g .
IMG SIZE ['WIDTH'] , 1))

img conc = Concatenate () ([img input , img input , img input])

Next, the CNN architecture pre-trained on ImageNet is used through the

CHAPTER 5. IMPLEMENTATION 46

Keras Application API, allowing any CNN to be used such as VGG19 or Mo-
bileNetV2. The fully connected layers are dropped by adding include top=False
to the imported model. To download the ImageNet weights automatically, the
following line of code is included to bypass SSL certificate verifications:

s s l . c r e a t e d e f a u l t h t t p s c o n t e x t = s s l . c r e a t e u n v e r i f i e d c o n t e x t
model base = MobileNetV2 (i n c l ude t op=False , weights=”imagenet ” ,

i npu t t en so r=img conc)

Next, a Flatten layer is added to convert the data from 2D to 1D, making
it compatible with a fully-connected MLP. In this MLP, a dropout layer with
a rate of 0.2 is added, followed by two dense hidden layers (one with 512
neurons, the other with 32 neurons). Finally, the output layer is appended at
the end of the sequential model, with either a sigmoid activation function if
the CBIS-DDSM dataset is used or a softmax activation function if the mini-
MIAS dataset is used. If large images are used (e.g. 1024 x 1024 pixels or
larger), then additional convolution and pooling layers are added before the
pre-trained model using Keras’ Conv2D and MaxPooling2D classes.

5.4.2 Training Steps

The training phase is separated in two steps, as mentioned in Section 4.2.2.
To freeze the pre-trained base model’s layers, the trainable attribute is set to
False, allowing only the MLP’s fully connected layers to learn. During this
step, the learning rate and the maximum number of epochs are set by the
CLI arguments, which default to 0.001 and 150 respectively. Once training
converges, all layers are unfrozen by setting trainable attribute to True and a
second training phase is launched with a lower learning rate set to 0.00001.

Tensorflow Callbacks are used to enable early stopping conditions, which
are set to halt training when the validation loss does not improve after the
maximum number epochs specified divided by 10 (e.g. 150/10 = 15). Ad-
ditionally, an option to reduce the learning rate on plateaus is used to avoid
increasing the validation loss when the learning stagnates, which is set at half
the previously mentioned patience.

For the CBIS-DDSM dataset, the BinaryCrossentropy loss and Binary-
Accuracy are used, whereas CategoricalCrossentropy and CategoricalAccuracy
are used for the mini-MIAS dataset. This is necessary as different forms of
cross entropy and accuracy equations have to be used to accommodate the bi-
nary classification tasks which have labels encoded differently (binary-encoded
labels for CBIS-DDSM and one-hot-encoded labels for mini-MIAS).

CHAPTER 5. IMPLEMENTATION 47

5.4.3 Model & Weights Saving

Once the CNN is finished training, the full model, including the model’s config-
uration, the layer hyperparameters, the optimiser, the training results (losses
and metrics), and the model’s state (layer weights) are saved in HDF5 format
(“.h5” file extension) to be re-used for the model’s final evaluation on the test
set. Additionally, specific layer weights are saved for transfer learning experi-
ments, such as the entire model’s weights or the fully connected layers’ weights
only, to test different levels of transfer learning (see Section 6.7).

To perform transfer learning from the mini-MIAS dataset to the CBIS-
DDSM dataset, the mini-MIAS dataset is binarised by dropping normal cases
altogether, creating a tiny dataset of 115 abnormal images (64 benign and 51
malignant). The model is then trained on the binary mini-MIAS dataset and
its final weights are saved in NumPy format. These weights can be loaded
when instantiating a new model for fitting the CBIS-DDSM dataset.

5.5 Predictions & Results visualisation

Once the model is trained, predictions can be made through the make prediction
function by passing in new images and their ground truth labels. These pre-
dictions are then evaluated through the metrics mentioned in Section 4.2.3.
The accuracy, precision, recall, F1 score and confusion matrices are all calcu-
lated via Scikit-Learn’s metrics API. Additionally, the evolution of the loss
and accuracy on the training and validation sets are all plotted against the
number of epochs during both phases of training to assess how well the model
learned the data and where improvements could be made. The results above
are either saved in CSV files or plotted using Matplotlib and Seaborn before
being saved in PNG format to later be referenced in Chapter 6.

During the development of this pipeline, the validation set was used to
assess the performance of the model without snooping into the test dataset,
which was reserved for the final evaluation of the model in Chapter 6.

5.6 Pipeline Flowchart

The flowchart in Figure 5.3 reveals which sections of the pipeline were imple-
mented as a group, later amended, and implemented individually.

CHAPTER 5. IMPLEMENTATION 48

Figure 5.3: A detailed flowchart of the breast cancer detection deep learning
pipeline implemented, separated between data pre-processing, model training,
results visualisation and fine-tuning.

Chapter 6

Results & Evaluation

This section covers the bag-of-tricks approach mentioned in Section 4.2.2,
where multiple deep learning techniques covered throughout Chapters 2 &
4 are experimented with to determine which improve the performance of the
model. Across each experiment, identical configurations are used to ensure
that accurate comparisons can be made.

6.1 Test Data

CBIS-DDSM dataset contains the following number of test samples:

• Total: 641

– Benign: 381

– Malignant: 260

The mini-MIAS dataset contains the following number of test samples:

• Total: 65

– Normal: 42

– Benign: 13

– Malignant: 10

6.2 Model Used

The model described in Section 4.2.2 is used across all the experiments in this
chapter. Only the dataset, base CNN architecture, batch size, class weights,
data augmentation factor, input size, weight initialisation and type of mammo-
grams vary across the following experiments. The following remain constant
across the experiments:

• fully connected MLP with 512 and 32 hidden neurons and 2/3 output
neurons;

49

CHAPTER 6. RESULTS & EVALUATION 50

• dropout layer using p = 0.2;

• Adam optimiser with a learning rate of 0.001 for VGG19 and 0.0001 for
MobileNetV2;

• whole images.

6.3 Baseline Results

An overall accuracy of 63.96% is achieved using the deep learning pipeline
developed as a group (Jaamour et al., 2020a), and is used as a benchmark to
compare the results obtained through the different bag-of-tricks techniques.

6.4 Base CNN Architectures

Five different CNN model architectures pre-trained on ImageNet (VGG19,
ResNet50, InceptionV3, DenseNet121 and MobileNetV2) are tested out as the
model’s base. For this test, the CBIS-DDSM dataset is used with whole images
resized to 512 x 512 pixels, a batch size of 2 and a learning rate of 0.0001.

CNN Architecture Overall Accuracy Precision Recall F1 Score

VGG19 63.96% 63.73% 63.96% 63.83%
ResNet50 61.00% 64.23% 61.00% 61.23%
InceptionV3 62.71% 62.52% 62.71% 62.60%
DenseNet121 64.74% 65.81% 64.74% 65.03%
MobileNetV2 66.46% 66.25% 66.46% 66.33%

Table 6.1: Results achieved on the CBIS-DDSm test set when using different
CNN architectures as the base model pre-trained on ImageNet weights.

The results found in Table 6.1 clearly reveal that MobileNetV2 unlocks
more performance than the other CNN architectures with a higher accuracy
and F1 score. The original VGG19 architecture used during the common
pipeline development is outperformed by more efficient models like DenseNet121
or MobileNetV2 but outperforms ResNet50 and InceptionV3. These results
contradict Falconi’s results on the CBIS-DDSM dataset, who finds that ResNet50
outperforms MobileNetV2 (Falconi et al., 2019). However, MobileNetV2 still
outperforms InceptionV3. These results may differ due to the different pre-
processing techniques being used as Falconi uses cropped images around ROIs,
whereas whole images are used in this experiment.

It is also worth noting that using MobileNetV2 a base architecture (66.46%
accuracy) already surpasses the baseline (63.96% accuracy), as well as models

CHAPTER 6. RESULTS & EVALUATION 51

that use traditional machine learning methods like SVMs with GLCM features
(63.03% accuracy) on the CBIS-DDSM dataset (Sarosa et al., 2018), confirm-
ing the points made in Section 2.4.

However, observing the training and testing runtimes in Figure 6.1 reveals
that VGG19 takes the longest time to train with 3h50m, whereas the more
efficient MobileNetV2 architecture takes 2h46m. Additionally, prediction run-
time is 2.3 times faster with MobileNetV2 compared to VGG19, which is more
useful for clinics as mammogram diagnosis results can be returned faster.

Figure 6.1: Training (2445 samples) and prediction (641 samples) runtimes on
the CBIS-DDSM dataset when using different CNN architectures as the base
model pre-trained on ImageNet .

6.5 Class Imbalance

6.5.1 Data Augmentation

Varying amounts of data augmentation are carried out on the mini-MIAS
dataset (due to time constraints, this experiment could not be tested on the
CBIS-DDSM dataset):

• No data augmentation;

• Data augmentation to balance class (create artificial benign and malig-
nant samples to reach the number of normal samples);

• Double data augmentation.

Table 6.2 betrays the inefficiency of data augmentation on small datasets
like mini-MIAS. Even doubling the amount of data maintains the same accu-
racy (64.62%) as no data augmentation, confirmed by the identical accuracy
and recall, which indicates that the model is overfitting. Indeed, the confusion

CHAPTER 6. RESULTS & EVALUATION 52

Base
Model

Data
Augmentation

Overall
Accuracy

Precision Recall F1 Score

VGG19
None 64.62% 41.75% 64.62% 50.73%
Class Balance 36.92% 48.89% 36.92% 40.45%
Double 64.62% 41.75% 64.62% 50.73%

MobileNetV2
None 64.62% 41.75% 64.62% 50.73%
Class Balance 41.54% 40.70% 41.54% 40.96%
Double 64.62% 41.75% 64.62% 50.73%

Table 6.2: Results achieved on the mini-MIAS test set when using different
amounts of data augmentation (none, balanced and double).

matrix in Figure 6.2 confirms that all test samples are classified as normal
despite the data augmentation.

Figure 6.2: Confusion matrix when double data augmentation is applied on
the mini-MIAS test dataset with MobileNetV2 as the base model.

Only when a few artificial samples are created for minority classes can
the model make predictions other than “normal”, but not well enough as the
accuracy tumbles to 36.92-41.54% depending on the base model used. This
model performs worse than other papers on the mini-MIAS dataset, which
can be due to the lack of image pre-processing used as Hepsag crops the im-
ages around the ROI rather than using whole images, achieving 68% accuracy
(Hepsaǧ et al., 2017).

In terms of the training runtime witnessed in Figure 6.3, the more data
augmentation is applied, the longer the runtime is, which is expected as there
is more data to process.

CHAPTER 6. RESULTS & EVALUATION 53

Figure 6.3: Training runtimes when using no data augmentation, augmenta-
tion to fix class balance and to double the training set size (744, 372 and 192
samples respectively) on the mini-MIAS dataset.

6.5.2 Class Weights

Distinct variations of class weights are used on the CBIS-DDSM dataset to
attempt to rectify the adverse effects that can be introduced by imbalanced
datasets without going through the unsuccessful process of data augmentation,
which considerably slows down the training time. Table 6.3 reports the three
class weight values that were tested using the imbalanced CBIS-DDSM dataset
with whole images resized to 512 x 512 pixels, a batch size of 2 and a learning
rate of 0.0001:

• No class weights (dataset remains imbalanced);

• Balanced class weights:

– 0.907 for majority class (benign),

– 1.113 for minority class (malignant);

• +50% class weight for minority class:

– 1.0 for benign samples,

– 1.5 for malignant samples.

These results clearly depict how including balanced weights to the samples
increases the accuracy across different base CNN models by 1.25-1.71%, thus
helping against the imbalanced dataset issue without resorting to techniques
like data augmentation. However, a manual weight increase for the minority
class decreases the accuracy by 0.78-1.1%, revealing the complexity of finding
the right parameters for balancing datasets as the 50% weight increase for
malignant samples made the dataset even more imbalanced. The normalised
confusion matrices found in Figures 6.4 and 6.5 expose how including class

CHAPTER 6. RESULTS & EVALUATION 54

Base
model

Class
weights

Overall
Accuracy

Precision Recall F1 Score

VGG19
None 62.25% 63.66% 62.25% 62.58%
Balanced 63.96% 63.94% 63.96% 63.95%
+50%
minority

61.15% 62.16% 61.15% 61.45%

MobileNetV2
None 65.83% 66.33% 65.83% 66.01%
Balanced 67.08% 66.50% 67.08% 66.48%
+50%
minority

65.05% 65.19% 65.05% 65.12%

Table 6.3: Results achieved on the CBIS-DDSM test set when using different
class weights (none, balanced and +50% minority class) with VGG19 and
MobileNet architectures as base model.

weights leads to the model being more confused as many malignant samples
are classified as benign.

Figure 6.4: Normalised confusion matrix when no class weights are used with
MobileNetV2 as the base model on the CBIS-DDSM dataset.

CHAPTER 6. RESULTS & EVALUATION 55

Figure 6.5: Normalised confusion matrix when balanced class weights are used
with MobileNetV2 as the base model on the CBIS-DDSM dataset.

6.6 Input Image Size

Different image sizes are explored to determine their effect on the model’s
performance on the CBIS-DDSM dataset. For the smaller image sizes, larger
batch sizes are used, whereas for the larger image sizes, smaller batch numbers
are defined along with the extra convolutional and pooling layers mentioned
in Section 5.4.1 to accommodate the larger image size:

• 224 x 224 pixels (chosen as most CNNs pre-trained on ImageNet use this
size) with a batch size of 8;

• 512 x 512 pixels with a batch size of 2;

• 1024 x 1024 pixels (with additional convolutional/pooling layers) with a
batch size of 2.

The results in Table 6.4 clearly expose the accuracy increase when using
512 pixels-wide input size rather than 224, with a 0.63% increase on VGG19
and 4.52% increase on MobileNetV2. However, further increasing the input
size to 1024 pixels has no positive effect as the accuracy drops by 4.52% on
VGG19 and leads to an Out Of Memory (OOM) error on MobileNetV2, despite
lowering the batch size to 1.

CHAPTER 6. RESULTS & EVALUATION 56

Base
Model

Whole
Image
Size
(pixels)

Extra
conv/
pool
layers

Overall
Accuracy

Precision Recall F1 Score

VGG19
224 x 224 No 63.96% 65.33% 63.96% 64.28%
512 x 512 No 64.59% 64.44% 64.59% 64.51%
1024 x 1024 Yes 59.28% 66.94% 59.28% 58.43%

MobileNetV2
224 x 224 No 62.56% 62.38% 62.56% 62.46%
512 x 512 No 67.08% 66.50% 67.08% 66.48%
1024 x 1024 Yes OOM OOM OOM OOM

Table 6.4: Results achieved on the CBIS-DDSM test set when using different
input image sizes (224, 512 and 1024 pixels).

Figure 6.6: Evolution of the accuracy and loss during both training phases
when testing 1024x1024 input size on VGG19.

CHAPTER 6. RESULTS & EVALUATION 57

Observing the evolution of the training accuracy and loss when using 1024
x 1024 pixels input size on VGG19 (see Figure 6.6), it can be seen that the
validation loss increases while the training loss decreases and that both sets’
training accuracies are increasing as well; which is a typical pattern of a model
overfitting the data. Because the model is overfitting the data, a very high pre-
cision (66.94%) but low recall (59.28%) is witnessed in Table 6.4 for 1024x1024
input size, which is hugely detrimental as a BCD system that detects malig-
nant cases as benign could lead to the death of the patient.

As expected, increasing the image size also increases the training runtime
(see Figure 6.7), which is boosted by a factor of 2.4 when increasing from
224 to 512 pixels, and a factor of 2.8 from 512 to 1024 pixels on VGG19.
However, another advantage of MobileNetV2 over VGG19 is that it scales
better to larger input sizes as increasing the input from 224 to 512 pixels only
raises the runtime by a factor of 1.54, and prediction times are quicker than
VGG19 predictions (13.5 minutes on average for MobileNetV2 compared to
21.3 minutes for VGG19).

Figure 6.7: Training (2445 samples) and prediction (641 samples) runtimes on
the CBIS-DDSM dataset when using different input image sizes (224, 512 and
1024 pixels).

Nevertheless, the accuracy/training runtime trade-off is not primordial in
breast cancer detection as the primary goal is to develop a system that can
correctly diagnose early forms of cancers in mammograms as accurately as
possible, regardless of the runtime. Ultimately, prediction runtimes will matter
when used in clinics.

6.7 Varying Amounts of Transfer Learning

This experiment consists of expanding upon the concept of transfer learning.
Instead of using a CNN pre-trained on ImageNet, weights of a model trained on

CHAPTER 6. RESULTS & EVALUATION 58

a binarised mini-MIAS dataset are transferred to the CBIS-DDSM dataset (see
Section 5.4.3). Four different experiments using an identical CNN architecture
are tested to assess the effect of transfer learning from the binarised mini-MIAS
dataset and ImageNet to the CBIS-DDSM dataset:

• Transfer learning of all layer weights (MobileNetV2 and MLP layers
instantiated with binary mini-MIAS weights);

• Transfer learning of fully connected layer weights (MLP layers instanti-
ated with binary mini-MIAS weights, MobileNetV2 layers instantiated
with ImageNet weights);

• Transfer learning of ImageNet weights only (MLP layers instantiated
with random weights, MobileNetV2 layers instantiated with ImageNet
weights);

• No transfer learning (MobileNetV2 and MLP connected layers instanti-
ated with random weights).

Transfer Learning Overall Accuracy Precision Recall F1 Score

Full
mini-MIAS-binary
transfer learning

63.18% 64.07% 63.18% 63.45%

MLP layers
mini-MIAS-binary
transfer learning

67.08% 67.28% 67.08% 67.17%

MobileNet layers
ImageNet
transfer learning

67.08% 66.50% 67.08% 66.48%

No transfer learning
(random weights)

61.62% 61.00% 61.62% 61.17%

Table 6.5: Results achieved on the test set when using different amounts
of transfer learning on the CBIS-DDSM dataset with the MobileNetV2 base
model.

The results in Table 6.5 clearly indicate that any form of transfer learn-
ing is better than random weight initialisation with such a small dataset. On
the other hand, too much transfer learning by using all the weights from the
model trained on the binary mini-MIAS dataset does not generalise well to
the CBIS-DDSM dataset. The best performance came from initialising Mo-
bileNetV2 with ImageNet weights and the MLP layers with the MLP layer
weights trained on the binary mini-MIAS, achieving an F1 score of 67.17%.
This was closely followed by again using ImageNet weights for MobileNetV2

CHAPTER 6. RESULTS & EVALUATION 59

and random weights for the MLP layers which reached the same overall accu-
racy but a lower F1 score (66.48%).

The ImageNet weights transfer confirmed the performance that can be
gained, as well the adaptive nature of CNNs when using knowledge learned
from large general datasets for a more specific task like breast cancer detection.

Figure 6.8: Training (2445 samples) and prediction (641 samples) runtimes
on the CBIS-DDSM dataset when using different amounts of transfer learning
through the binary mini-MIAS and ImageNet datasets with MobileNetV2 as
a base model.

It is worth noting that training is slightly quicker when using weights
from binary mini-MIAS (see Figure 6.8) as the model converges more quickly
towards a known solution. However, it is the early stopping conditions men-
tioned in Section 4.2.2 that dictate the training duration.

6.8 Mammogram Types

To assess how the model would adapt to samples from a single mammogram
type, the CBIS-DDSM dataset was separated into only masses samples and
only calcifications samples (see Section 3.2.2 for samples). Three different
experiments were tested:

• All types of mammograms (masses + calcifications);

• Mass mammograms only;

• Calcification mammograms only.

These results show that the model using VGG19 as a base model learns
the data much better when masses and calcifications are separated, reaching

CHAPTER 6. RESULTS & EVALUATION 60

Base
Model

Mammogram
type

Overall
Accuracy

Precision Recall F1 Score

VGG19
All 59.44% 35.33% 59.44% 44.32%
Masses 64.35% 63.70% 64.35% 63.86%
Calcifications 66.67% 67.05% 66.67% 66.80%

MobileNetV2
All 67.08% 66.50% 67.08% 66.48%
Masses 63.23% 63.23% 63.23% 63.23%
Calcifications 63.12% 64.57% 63.12% 63.39%

Table 6.6: Results achieved with on the test set when using different types
of mammograms (VGG19, ResNet50, InceptionV3, DenseNet121 and Mo-
bileNetV2) on the CBIS-DDSM dataset.

64.35% and 66.67% accuracy respectively on the test set, but only managing
59.44% when using the full CBIS-DDSM dataset. Indeed, the normalised con-
fusion matrix on the full CBIS-DDSM dataset indicates that all instances are
classified as “benign”, indicating that the model gets confused when dealing
with multiple views and cannot tell benign and malignant cases from each
other. This outcome is in line with Hepsag’s results, which achieve higher
accuracies when classifying either masses or calcifications on another dataset
(Hepsaǧ et al., 2017), and confirms Elter’s claim that masses are harder to
detect than calcifications (Elter and Horsch, 2009).

However, the opposite effect is witnessed when MobileNetV2 is used as
a base model, reaching an accuracy of 67.08% when the full dataset is used
and only 63.12% and 63.23% accuracy for calcifications and masses respec-
tively, contradicting the previous results. Because CNNs automatically learn
features, it can be hard to know exactly what goes on underneath the hood
of these models, especially when using architectures like VGG19 and Mo-
bileNetV2. Visualising heatmaps of the feature maps for each convolution
layer could help understand why these models react differently when using all
images or only specific types of mammograms, but is out of the scope of this
project given the time frame.

CHAPTER 6. RESULTS & EVALUATION 61

Figure 6.9: Training and prediction runtimes on the CBIS-DDSM dataset
when using different mammogram types (all, masses and calcifications).

In terms of runtime, training and prediction times are approximately twice
as fast, since there is roughly twice less data after the dataset split (see Fig-
ure 6.9).

6.9 Results Summary

The most interesting results from the bag-of-tricks approached are summarised
in Figure 6.10, depicting each technique’s accuracy relative to the benchmark.

CHAPTER 6. RESULTS & EVALUATION 62

Figure 6.10: Bar chart summarising the relative accuracies achieved for each
experiment compared to the baseline developed as group on the CBIS-DDSM
dataset.

Chapter 7

Conclusions

7.1 Achievements

The main goal of this project was to design and implement a deep learning
pipeline capable of detecting cases of breast cancer in mammograms through
various deep learning techniques. After investigating a wide array of tech-
niques using a bag-of-tricks approach, a fully-functional pipeline with data
pre-processing steps, a CNN model for learning the data and prediction visu-
alisations was created.

This deep learning pipeline exposed the effects of the different techniques
used. The most positive result (67.08%) on CBIS-DDSM came from transfer
learning techniques, using ImageNet weights with MobileNetV2 and binary
mini-MIAS weights for the custom MLP layers, coupled with class weight
techniques for balancing the dataset. Separating CBIS-DDSM samples be-
tween masses and calcifications also yielded increased accuracies compared to
the benchmark (64.35% and 66.67% respectively) when using VGG19 as a
base model. However, other techniques did not behave as expected and re-
sulted in poor accuracies, such as using data augmentation on a small dataset
(mini-MIAS), separating CBIS-DDSM samples between masses and calcifica-
tions with MobileNetV2 instead of VGG19 and using larger input images with
extra convolutional and pooling layers to learn lower-level features.

7.2 Code Availability

Digital Object Identifiers (DOI) have been generated for the open-sourced
code repositories to ensure that the code can be permanently identified and
referenced on the web, as URLs can easily change over time while DOIs remain
immutable.

63

CHAPTER 7. CONCLUSIONS 64

The code developed for this dissertation can be found online at the fol-
lowing URL: https://doi.org/10.5281/zenodo.3985051 (Jaamour et al.,
2020b), while the code developed in common as a group at the beginning of
the dissertation can be found online at the following URL: https://doi.org/
10.5281/zenodo.3975093 (Jaamour et al., 2020a).

7.3 Limitations

A known limitation concerning all breast cancer detection systems lies with the
data. Indeed, the most widely used datasets of mammograms (e.g. DDSM)
contain mammography data that mainly originates from white females located
in North America (see Table 7.1), which naturally introduces bias to the model
learning this data (Yala et al., 2019).

Data source

Race MGH WFUSM

Asian 2.06% 0.20%

Black 4.12% 20.40%

Spanish Surname 6.55% 1.80%

American Indian 0.00% 0.10%

Other 0.75% 0.10%

Unknown 30.34% 0.30%

White 56.18% 77.00%

Table 7.1: DDSM dataset patient population statistics (female). Data col-
lected by Massachusetts General Hospital (MGH) and Wake Forest University
School of Medicine (WFUSM) (Heath et al., 2001).

Different body types linked to the geographic location of the patients used
to create these databases can have a direct impact on the mammograms them-
selves and not generalise to females from other cultures. For example, a recent
study with 53,000 North American females showed how diets that include dairy
milk consumption might increase the risk of breast cancer by a maximum of
80% based on the consumption (Fraser et al., 2020). This means that if these
deep learning algorithms were implemented in clinics outside western coun-
tries, they might not generalise well to other body morphologies (e.g. due to
different diets based on the geolocation’s culture). This limitation could be
resolved by collecting more varied data from multiple locations around the
world, not just a single region, which would also help deep learning algorithms
as more data is always welcomed.

Another limitation in terms of the detection system’s usability is the con-
fidence of the predictions. Indeed, when given new test samples, the model

https://doi.org/10.5281/zenodo.3985051
https://doi.org/10.5281/zenodo.3975093
https://doi.org/10.5281/zenodo.3975093

CHAPTER 7. CONCLUSIONS 65

predicts a class label, e.g. benign or malignant. However, these do not indi-
cate the prediction’s confidence, as it can be anywhere between the decision
boundary’s limit (not confident) and far from the decision boundary (confi-
dent). Therefore, from a clinical point of view, it is hard to make a decision
based on the predictions made by a system similar to this one. Ideally, a
probability-based confidence metric would be coupled with the predictions to
motivate the next step after the diagnosis. For example, if the confidence
of a malignant tumour is high (e.g. 99%), then breast-conserving surgery
or chemotherapy can be recommended, whereas if the confidence is low (e.g.
54%), then further screening tests can be recommended instead.

Finally, the time frame of this project was a limiting factor in the final
performance achieved as an extensive fine-tuning method like grid search would
not have had the time to try different combinations of configurations and could
not be implemented due to the issues mentioned in Section 4.2.2.

7.4 Future Work

The main area of work that requires improvements is the mammogram pre-
processing as it is often an area where significant performance gains can be
found (Litjens et al., 2017) by using techniques such as global contrast nor-
malisation (GCN), local contrast normalisation, and Otsu’s threshold segmen-
tation. Artefacts such as tags on the x-rays and black backgrounds should all
be removed using computer vision techniques to avoid having the CNN learn
irrelevant features.

Another area where improvements can be made is the fine-tuning to ex-
tract better performance on the datasets and avoid overfitting. With the data-
preprocessing mentioned above, images would be smaller (e.g. no redundant
dark background), which would allow for quicker runtimes (the results in Sec-
tion 6.6 revealed that smaller images lower the training runtime), which would
allow fine-tuning algorithms like grid search to explore more combinations of
configurations in order to unlock better solutions.

7.5 Reflections

This project was an exciting challenge from my point of view as it encompassed
all the classical challenges that need to be faced when building deep learning
algorithms, clearly showing that creating a solution with high performance is
not as easy as it sounds. Having first-hand experienced a family member going
through cancer, having the opportunity to use my knowledge to contribute to
the field of cancer detection was motivating.

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp,
A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C.,
Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker,
P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P.,
Wattenberg, M., Wicke, M., Yu, Y. and Zheng, X. (2015), ‘TensorFlow:
Large-scale machine learning on heterogeneous systems’. Software available
from tensorflow.org.
URL: https: // www. tensorflow. org/

Akay, M. F. (2009), ‘Support vector machines combined with feature selection
for breast cancer diagnosis’, Expert Systems with Applications 36(2 PART
2), 3240–3247.
URL: http: // dx. doi. org/ 10 .10 16/ j. eswa. 20 08. 01. 00 9

Amari, S.-i. and Wu, S. (1999), ‘Improving support vector machine classifiers
by modifying kernel functions’, Neural Networks 12(6), 783–789.

American Cancer Society (2019), ‘American Cancer Society screen-
ing recommendations for women at average breast cancer risk’,
https://www.cancer.org/cancer/breast-cancer/screening-tests-

and-early-detection/american-cancer-society-recommendations-

for-the-early-detection-of-breast-cancer.html. [Online] Accessed:
2020-06-22.

Asri, H., Mousannif, H., Al Moatassime, H. and Noel, T. (2016), Using Ma-
chine Learning Algorithms for Breast Cancer Risk Prediction and Diagnosis,
in ‘Procedia Computer Science’, Vol. 83, Elsevier, pp. 1064–1069.

Bennett, K. P. and Blue, J. A. (1998), ‘Support vector machine approach
to decision trees’, IEEE International Conference on Neural Networks -
Conference Proceedings 3, 2396–2401.

Bergstra, J., Yamins, D. and Cox, D. (2013), ‘Hyperopt: A Python Library

66

https://www.tensorflow.org/
http://dx.doi.org/10.1016/j.eswa.2008.01.009
https://www.cancer.org/cancer/breast-cancer/screening-tests-and-early-detection/american-cancer-society-recommendations-for-the-early-detection-of-breast-cancer.html
https://www.cancer.org/cancer/breast-cancer/screening-tests-and-early-detection/american-cancer-society-recommendations-for-the-early-detection-of-breast-cancer.html
https://www.cancer.org/cancer/breast-cancer/screening-tests-and-early-detection/american-cancer-society-recommendations-for-the-early-detection-of-breast-cancer.html

BIBLIOGRAPHY 67

for Optimizing the Hyperparameters of Machine Learning Algorithms’, Pro-
ceedings of the 12th Python in Science Conference (Scipy), 13–19.

Bhardwaj, A. and Tiwari, A. (2015), ‘Breast cancer diagnosis using Geneti-
cally Optimized Neural Network model’, Expert Systems with Applications
42(10), 4611–4620.

Cancer Research UK (2020), ‘Breast cancer statistics’, https:

//www.cancerresearchuk.org/health-professional/cancer-

statistics/statistics-by-cancer-type/breast-cancer. [Online]
Accessed: 2020-05-28.

Caruana, R. and Niculescu-Mizil, A. (2006), An empirical comparison of su-
pervised learning algorithms, in ‘ACM International Conference Proceeding
Series’, Vol. 148, ACM Press, New York, New York, USA, pp. 161–168.
URL: http: // portal. acm. org/ citation. cfm? doid= 1143844.

1143865

Caulfield, B. (2009), ‘What’s the Difference Between a CPU vs a GPU,
NVIDIA Blog’, https://blogs.nvidia.com/blog/2009/12/16/whats-

the-difference-between-a-cpu-and-a-gpu/. [Online] Accessed: 2020-
07-29.

Chen, Y., Zhang, Q., Wu, Y., Liu, B., Wang, M. and Lin, Y. (2019), Fine-
tuning ResNet for breast cancer classification from mammography, in ‘Lec-
ture Notes in Electrical Engineering’, Vol. 536, Springer Verlag, pp. 83–96.
URL: https: // doi. org/ 10 .10 07/ 978-981-13-6837-0{ }7

Chollet, F. et al. (2015), ‘Keras’, https://github.com/fchollet/keras.

Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore,
S., Phillips, S., Maffitt, D., Pringle, M., Tarbox, L. and Prior, F. (2013),
‘The cancer imaging archive (TCIA): Maintaining and operating a public
information repository’, Journal of Digital Imaging 26(6), 1045–1057.

Deng, J., Dong, W., Socher, R., Li, L.-J., Kai Li and Li Fei-Fei (2010), Ima-
geNet: A large-scale hierarchical image database, in ‘Institute of Electrical
and Electronics Engineers (IEEE)’, pp. 248–255.

Diaz, O., Marti, R., Llado, X. and Agarwal, R. (2018), Mass detection in
mammograms using pre-trained deep learning models, in E. A. Krupinski,
ed., ‘14th International Workshop on Breast Imaging (IWBI 2018)’, Vol.
10718, SPIE, p. 12.
URL: https: // www. spiedigitallibrary. org/ conference-

proceedings-of-spie/ 10 718/ 2317681/ Mass-detection-in-

mammograms-using-pre-trained-deep-learning-models/ 10 .1117/

12. 2317681. full

https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer
http://portal.acm.org/citation.cfm?doid=1143844.1143865
http://portal.acm.org/citation.cfm?doid=1143844.1143865
https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
https://doi.org/10.1007/978-981-13-6837-0{_}7
https://github.com/fchollet/keras
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10718/2317681/Mass-detection-in-mammograms-using-pre-trained-deep-learning-models/10.1117/12.2317681.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10718/2317681/Mass-detection-in-mammograms-using-pre-trained-deep-learning-models/10.1117/12.2317681.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10718/2317681/Mass-detection-in-mammograms-using-pre-trained-deep-learning-models/10.1117/12.2317681.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10718/2317681/Mass-detection-in-mammograms-using-pre-trained-deep-learning-models/10.1117/12.2317681.full

BIBLIOGRAPHY 68

Dietterich, T. (1995), ‘Overfitting and undercomputing in machine learning’,
ACM computing surveys (CSUR) 27(3), 326–327.

Elter, M. and Horsch, A. (2009), ‘CADx of mammographic masses and clus-
tered microcalcifications: A review’, Medical Physics 36(6), 2052–2068.

Falconi, L. G., Perez, M. and Aguilar, W. G. (2019), ‘Transfer Learning in
Breast Mammogram Abnormalities Classification with Mobilenet and Nas-
net’, International Conference on Systems, Signals, and Image Processing
2019-June, 109–114.

Fraser, G. E., Jaceldo-Siegl, K., Orlich, M., Mashchak, A., Sirirat, R. and
Knutsen, S. (2020), ‘Dairy, soy, and risk of breast cancer: those confounded
milks’, International Journal of Epidemiology .
URL: https: // academic. oup. com/ ije/ advance-article/ doi/ 10

.10 93/ ije/ dyaa0 07/ 5743492

Géron, A. (2019), Hands-On Machine Learning with Scikit-Learn, Keras &
TensorFlow, 2nd edn, O’Reilly Media.

Hanlon, J. (2016), ‘Why is so much memory needed for deep
neural networks?’, https://www.graphcore.ai/posts/why-is-so-much-
memory-needed-for-deep-neural-networks. [Online] Accessed: 2020-07-
30.

Heath, M., Bowyer, K., Kopans, D., Moore, R. and Kegelmeyer, W. P. (2001),
The Digital Database for Screening Mammography, in ‘Fifth International
Workshop on Digital Mammography’, Medical Physics Publishing, pp. 212–
218.

Hepsaǧ, P. U., Özel, S. A. and Yazici, A. (2017), Using deep learning for mam-
mography classification, in ‘2nd International Conference on Computer Sci-
ence and Engineering, UBMK 2017’, Institute of Electrical and Electronics
Engineers Inc., pp. 418–423.

Hunter, J. D. (2007), ‘Matplotlib: A 2d graphics environment’, Computing in
Science & Engineering 9(3), 90–95.

Jaamour, A., Patel, A. and Chen, S.-J. (2020a), ‘Breast cancer detection in
mammograms using deep learning techniques - common pipeline code’.
URL: https: // doi. org/ 10 .5281/ zenodo. 39750 93

Jaamour, A., Patel, A. and Chen, S.-J. (2020b), ‘Breast cancer detection in
mammograms using deep learning techniques - source code’.
URL: https: // doi. org/ 10 .5281/ zenodo. 39850 51

https://academic.oup.com/ije/advance-article/doi/10.1093/ije/dyaa007/5743492
https://academic.oup.com/ije/advance-article/doi/10.1093/ije/dyaa007/5743492
https://www.graphcore.ai/posts/why-is-so-much-memory-needed-for-deep-neural-networks
https://www.graphcore.ai/posts/why-is-so-much-memory-needed-for-deep-neural-networks
https://doi.org/10.5281/zenodo.3975093
https://doi.org/10.5281/zenodo.3985051

BIBLIOGRAPHY 69

Jadoon, M. M., Zhang, Q., Haq, I. U., Butt, S. and Jadoon, A. (2017),
‘Three-Class Mammogram Classification Based on Descriptive CNN Fea-
tures’, BioMed Research International 2017.

Karabatak, M. and Ince, M. C. (2009), ‘An expert system for detection of
breast cancer based on association rules and neural network’, Expert Systems
with Applications 36(2 PART 2), 3465–3469.

Keras (2020), ‘Keras Applications’, https://keras.io/api/applications/.
[Online] Accessed: 2020-08-09.

Kharya, S., Agrawal, S. and Soni, S. (2014), ‘Naive Bayes Classifiers: A Prob-
abilistic Detection Model for Breast Cancer’, International Journal of Com-
puter Applications 92(10), 26–31.

Krizhevsky, A., Sutskever, I. and Hinton, G. E. (2012), ImageNet Classification
with Deep Convolutional Neural Networks, Technical report, Google.
URL: http: // code. google. com/ p/ cuda-convnet/

Kumar, U. K., Nikhil, M. B. and Sumangali, K. (2017), ‘Prediction of breast
cancer using voting classifier technique’, 2017 IEEE International Confer-
ence on Smart Technologies and Management for Computing, Communi-
cation, Controls, Energy and Materials, ICSTM 2017 - Proceedings (Au-
gust), 108–114.

LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998), ‘Gradient-
based learning applied to document recognition’, Proceedings of the IEEE
86(11), 2278–2323.

Lee, R. S., Gimenez, F., Hoogi, A., Miyake, K. K., Gorovoy, M. and Rubin,
D. L. (2017), ‘A curated mammography data set for use in computer-aided
detection and diagnosis research’, Scientific Data 4.

Li, J. and Allinson, N. M. (2008), ‘A comprehensive review of current local
features for computer vision’, Neurocomputing 71(10-12), 1771–1787.

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian,
M., van der Laak, J. A., van Ginneken, B. and Sánchez, C. I. (2017), ‘A
survey on deep learning in medical image analysis’.

Liu, X. Y., Wu, J. and Zhou, Z. H. (2009), ‘Exploratory undersampling for
class-imbalance learning’, IEEE Transactions on Systems, Man, and Cyber-
netics, Part B: Cybernetics 39(2), 539–550.

Martin, Laura J. (2019), ‘WebMD: Breast Biopsy for Breast Cancer Diag-
nosis’, https://www.webmd.com/breast-cancer/breast-biopsy. [Online]
Accessed: 2020-06-22.

https://keras.io/api/applications/
http://code.google.com/p/cuda-convnet/
https://www.webmd.com/breast-cancer/breast-biopsy

BIBLIOGRAPHY 70

McCulloch, W. S. and Pitts, W. (1943), ‘A logical calculus of the ideas imma-
nent in nervous activity’, The bulletin of mathematical biophysics 5(4), 115–
133.

Medjahed, S. A., Ait Saadi, T. and Benyettou, A. (2013), ‘Breast Cancer
Diagnosis by using k-Nearest Neighbor with Different Distances and Classi-
fication Rules’, International Journal of Computer Applications 62(1), 1–5.

Michael, W. (2020), ‘seaborn: statistical data visualization’, https://

seaborn.pydata.org/. [Online] Accessed: 2020-08-09.

Montazeri, M., Montazeri, M., Montazeri, M. and Beigzadeh, A. (2016), ‘Ma-
chine learning models in breast cancer survival prediction’, Technology and
Health Care 24(1), 31–42.

Oliphant, T. and developers, N. (2020), ‘NumPy’, https://numpy.org/. [On-
line] Accessed: 2020-08-09.

Osareh, A. and Shadgar, B. (2010), Machine learning techniques to diagnose
breast cancer, in ‘2010 5th International Symposium on Health Informatics
and Bioinformatics, HIBIT 2010’, pp. 114–120.

Paliwal, M. and Kumar, U. A. (2009), ‘Neural networks and statistical tech-
niques: A review of applications’.

pandas development team, T. (2020), ‘pandas-dev/pandas: Pandas’.
URL: https: // doi. org/ 10 .5281/ zenodo. 350 9134

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A.,
Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner,
B., Fang, L., Bai, J. and Chintala, S. (2019), Pytorch: An imperative
style, high-performance deep learning library, in H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox and R. Garnett, eds, ‘Advances
in Neural Information Processing Systems 32’, Curran Associates, Inc.,
pp. 8024–8035.
URL: http: // papers. neurips. cc/ paper/ 90 15-pytorch-an-

imperative-style-high-performance-deep-learning-library. pdf

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas,
J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay,
E. (2011), ‘Scikit-learn: Machine learning in Python’, Journal of Machine
Learning Research 12, 2825–2830.

Peterson, L. E. (2009), ‘K-nearest neighbor’, Scholarpedia 4(2), 1883.

https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://numpy.org/
https://doi.org/10.5281/zenodo.3509134
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

BIBLIOGRAPHY 71

Polat, K. and Güneş, S. (2007), ‘Breast cancer diagnosis using least square
support vector machine’, Digital Signal Processing 17(4), 694–701.
URL: https: // linkinghub. elsevier. com/ retrieve/ pii/ S10 5120

040 60 01461

Punitha, S., Amuthan, A. and Joseph, K. S. (2018), ‘Benign and malignant
breast cancer segmentation using optimized region growing technique’, Fu-
ture Computing and Informatics Journal 3(2), 348–358.

Quinlan, J. R. (2014), C4. 5: programs for machine learning, Elsevier.

Ramos-Pollán, R., Guevara-López, M. A., Suárez-Ortega, C., Dı́az-Herrero,
G., Franco-Valiente, J. M., Rubio-Del-Solar, M., González-De-Posada,
N., Vaz, M. A. P., Loureiro, J. and Ramos, I. (2012), ‘Discovering
mammography-based machine learning classifiers for breast cancer diagno-
sis’, Journal of Medical Systems 36(4), 2259–2269.

Raschka, S. and Mirjalili, V. (2017), Python machine learning, Packt Publish-
ing Ltd.

Rish, I. et al. (2001), An empirical study of the naive bayes classifier, in ‘IJCAI
2001 workshop on empirical methods in artificial intelligence’, Vol. 3, pp. 41–
46.

Russell, S. and Norvig, P. (2002), Artificial intelligence: a modern approach,
Pearson.

Sarkar, M. and Leong, T. Y. (2000), ‘Application of K-nearest neighbors algo-
rithm on breast cancer diagnosis problem.’, Proceedings / AMIA ... Annual
Symposium. AMIA Symposium pp. 759–763.

Sarosa, S. J. A., Utaminingrum, F. and Bachtiar, F. A. (2018), Mammogram
Breast Cancer Classification Using Gray-Level Co-Occurrence Matrix and
Support Vector Machine, in ‘3rd International Conference on Sustainable
Information Engineering and Technology, SIET 2018 - Proceedings’, Insti-
tute of Electrical and Electronics Engineers Inc., pp. 54–59.

Scikit-Learn Documentation: Neural network models (super-
vised) (2019), https://scikit-learn.org/stable/modules/

neural networks supervised.html. [Online] Accessed: 2020-06-22.

Shen, L., Margolies, L. R., Rothstein, J. H., Fluder, E., McBride, R. B. and
Sieh, W. (2017), ‘Deep Learning to Improve Breast Cancer Early Detection
on Screening Mammography’, Scientific Reports 9(1).
URL: http: // arxiv. org/ abs/ 170 8. 09427http: // dx. doi. org/ 10

.10 38/ s41598-019-48995-4

https://linkinghub.elsevier.com/retrieve/pii/S1051200406001461
https://linkinghub.elsevier.com/retrieve/pii/S1051200406001461
https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://scikit-learn.org/stable/modules/neural_networks_supervised.html
http://arxiv.org/abs/1708.09427 http://dx.doi.org/10.1038/s41598-019-48995-4
http://arxiv.org/abs/1708.09427 http://dx.doi.org/10.1038/s41598-019-48995-4

BIBLIOGRAPHY 72

Simonyan, K. and Zisserman, A. (2014), ‘Very deep convolutional networks
for large-scale image recognition’, arXiv preprint arXiv:1409.1556 .

Srivastava, N., Hinton, G., Krizhevsky, A. and Salakhutdinov, R. (2014),
Dropout: A Simple Way to Prevent Neural Networks from Overfitting,
Technical report.

Suckling, J. (1994), ‘The mammographic image analysis society digital
mammogram database exerpta medica’, International Congress Series
1069, 375–378.
URL: http: // peipa. essex. ac. uk/ info/ mias. html

Sumbaly, R., Vishnusri, N. and Jeyalatha, S. (2014), ‘Diagnosis of Breast
Cancer using Decision Tree Data Mining Technique’, International Journal
of Computer Applications 98(10), 16–24.

Szeliski, R. (2010), Computer vision: algorithms and applications, Springer
Science & Business Media.

Vishrutha, V. and Ravishankar, M. (2014), Early detection and classification
of breast cancer, in ‘Advances in Intelligent Systems and Computing’, Vol.
327, Springer Verlag, pp. 413–419.
URL: https: // link. springer. com/ chapter/ 10 .10 07/ 978-3-319-

11933-5{ }45

Wang, D., Khosla, A., Gargeya, R., Irshad, H. and Beck, A. H. (2016), ‘Deep
Learning for Identifying Metastatic Breast Cancer’.
URL: http: // arxiv. org/ abs/ 160 6. 05718

What Mammograms Show: Calcifications, Cysts, Fibroadenomas
(2018), https://www.breastcancer.org/symptoms/testing/types/

mammograms/mamm show. [Online] Accessed: 2020-06-21.

Wolberg, W. H., Street, W. N. and Mangasarian, O. L. (1995), ‘UCI
Machine Learning Repository: Breast Cancer Wisconsin (Diagnos-
tic) Data Set’, https://archive.ics.uci.edu/ml/datasets/Breast+

Cancer+Wisconsin+{%}28Diagnostic{%}29. [Online] Accessed: 2020-06-
16.

Wu, Y., Giger, M. L., Doi, K., Vyborny, C. J., Schmidt, R. A. and Metz,
C. E. (1993), ‘Artificial neural networks in mammography: Application to
decision making in the diagnosis of breast cancer’, Radiology 187(1), 81–87.
URL: https: // pubs. rsna. org/ doi/ abs/ 10 .1148/ radiology. 187.

1. 8451441

Yala, A., Lehman, C., Schuster, T., Portnoi, T. and Barzilay, R. (2019), ‘A
Deep Learning Mammography-based Model for Improved Breast Cancer

http://peipa.essex.ac.uk/info/mias.html
https://link.springer.com/chapter/10.1007/978-3-319-11933-5{_}45
https://link.springer.com/chapter/10.1007/978-3-319-11933-5{_}45
http://arxiv.org/abs/1606.05718
https://www.breastcancer.org/symptoms/testing/types/mammograms/mamm_show
https://www.breastcancer.org/symptoms/testing/types/mammograms/mamm_show
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+{%}28Diagnostic{%}29
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+{%}28Diagnostic{%}29
https://pubs.rsna.org/doi/abs/10.1148/radiology.187.1.8451441
https://pubs.rsna.org/doi/abs/10.1148/radiology.187.1.8451441

BIBLIOGRAPHY 73

Risk Prediction’, Radiology 292(1), 60–66.
URL: http: // pubs. rsna. org/ doi/ 10 .1148/ radiol. 20 19182716

Yue, W., Wang, Z., Chen, H., Payne, A. and Liu, X. (2018), ‘Machine Learn-
ing with Applications in Breast Cancer Diagnosis and Prognosis’, Designs
2(2), 13.
URL: http: // www. mdpi. com/ 2411-9660 /2/ 2/ 13

Zhu, M., Xia, J., Jin, X., Yan, M., Cai, G., Yan, J. and Ning, G. (2018), ‘Class
weights random forest algorithm for processing class imbalanced medical
data’, IEEE Access 6, 4641–4652.

http://pubs.rsna.org/doi/10.1148/radiol.2019182716
http://www.mdpi.com/2411-9660/2/2/13

Appendix A

Ethical Application Approval
Letter

Approval letter received on 18/06/2020 from the University of St Andrew’s
Teaching and Research Ethics Committee concerning the ethical application
submitted on 03/06/2020 for this research project.

74

University Teaching and Research Ethics Committee

ethics-cs@st-andrews.ac.uk

The University of St Andrews is a charity registered in Scotland: No SC013532

18 June 2020

Dear Shuen-Jen, Adam and Ashay,

Thank you for submitting your ethical application, which was considered by the School of Computer Science
Ethics Committee, where the following documents were reviewed:

1. Ethical Application Form

The School of Computer Science Ethics Committee has been delegated to act on behalf of the University Teaching
and Research Ethics Committee (UTREC) and has granted this application ethical approval. The particulars
relating to the approved project are as follows -

Approval Code: CS14950 Approved on: 18.06.20 Approval Expiry: 18.06.25

Project Title: Breast Cancer Detection in Mammograms using Deep Learning Techniques

Researcher(s): Shuen-Jen Chen, Adam Jaamour and Ashay Patel

Supervisor(s): Dr David Harris-Birtill

Approval is awarded for five years. Projects which have not commenced within two years of approval must be re-
submitted for review by your School Ethics Committee. If you are unable to complete your research within the
five year approval period, you are required to write to your School Ethics Committee Convener to request a
discretionary extension of no greater than 6 months or to re-apply if directed to do so, and you should inform your
School Ethics Committee when your project reaches completion.

If you make any changes to the project outlined in your approved ethical application form, you should inform your
supervisor and seek advice on the ethical implications of those changes from the School Ethics Convener who may
advise you to complete and submit an ethical amendment form for review.

Any adverse incident which occurs during the course of conducting your research must be reported immediately to
the School Ethics Committee who will advise you on the appropriate action to be taken.

Approval is given on the understanding that you conduct your research as outlined in your application and in
compliance with UTREC Guidelines and Policies (http://www.st-andrews.ac.uk/utrec/guidelinespolicies/). You are
also advised to ensure that you procure and handle your research data within the provisions of the Data Provision
Act 1998 and in accordance with any conditions of funding incumbent upon you.

Yours sincerely

Wendy Boyter

School Ethics Committee Administrator

APPENDIX A. ETHICAL APPLICATION APPROVAL LETTER 75

Appendix B

Languages & Frameworks
Comparison

B.1 Programming Languages

In terms of speed, compiled languages are quicker than interpreted languages,
but because the main bottleneck in a deep learning system is the training
phase of the model, which mainly relies on the library used rather than the
language itself, speed is not taken into account.

Python Java R Javascript

Familiarity Extremely familiar Familiar Unfamiliar Familiar

Deep Learning
Libraries support

Tensorflow, Keras,
PyTorch + ML suite
(NumPy, Pandas,
MatplotLib, Pandas)

DL4J

(Deeplearning4j)

Tensorflow,

Keras
Tensorflow

Third-party
CUDA support

Yes Yes Yes Yes

Pre-trained
models support

Yes Yes Yes Yes

CNN support Yes Yes Yes Yes

Speed Slow (interpreted) Fast (compiled) Fast (compiled) Slow (interpreted)

Table B.1: Table comparing the pros and cons of different programming lan-
guages when implementing a deep learning system.

B.2 Deep Learning Frameworks

Figures source: https://keras.io/why keras/.

76

https://keras.io/why_keras/

APPENDIX B. LANGUAGES & FRAMEWORKS COMPARISON 77

Figure B.1: Chart highlighting the number of articles mentioning Keras and
PyTorch. Figure downloaded from Keras website.

Figure B.2: Chart depicting the number of PyPI downloads for Keras and
PyTorch. Figure downloaded from Keras website.

Appendix C

Usage Instructions

C.1 Installation Instructions

Start by cloning the GitHub repository (either the common or the individual
code):

cd ˜/ Pro j e c t s
g i t c l one https : // github . com/Adamouization/Breast−Cancer−Detect ion

−Code

Create a repository that will be used to install Tensorflow 2 with CUDA
10 for Python and activate the virtual environment for GPU usage:

cd l i b r a r i e s / t f 2
ta r xvz f tensor f l ow2−cuda−10−1−e5bd53b3b5e6 . ta r . gz
sh bu i ld . sh

Activate the virtual environment:

source /Breast−Cancer−Detect ion−Code/ t f 2 /venv/bin / a c t i v a t e

“cd” into the “src” directory and run the code below.

C.2 Individual Code Instructions

Run the code:

main . py [−h] −d DATASET [−mt MAMMOGRAMTYPE] −m MODEL [− r RUNMODE]
[− l r LEARNING RATE] [−b BATCHSIZE] [−e1 MAXEPOCHFROZEN] [−e2
MAXEPOCHUNFROZEN] [−gs] [− r o i] [−v]

where:

• -h is a flag for help on how to run the code.

• DATASET is the dataset to use. Must be either mini-MIAS, mini-
MIAS-binary or CBIS-DDMS.

78

APPENDIX C. USAGE INSTRUCTIONS 79

• MAMMOGRAMTYPE is the type of mammogram to use. Can be either
calc, mass or all.

• MODEL is the model to use. Must be either VGG, VGG-common,
Inception or CNN. Default value is VGG-common.

• RUNMODE is the learning rate used for the all the non-pre-trained
ImageNet layers. Defaults to 1e-3. Must be a float.

• LEARNING RATE is the optimiser’s initial learning rate to use when
training the model during the first phase (frozen layers). Defaults to
0.001. Must be a positive float.

• BATCHSIZE is the batch size to use when training the model. Defaults
to 2. Must be a positive integer.

• MAXEPOCHFROZEN is the maximum number of epochs in the first
training phrase (with frozen layers). Defaults to 100. Must be a positive
integer.

• MAXEPOCHUNFROZEN is the maximum number of epochs in the
second training phrase (with unfrozen layers). Defaults to 50. Must be
a positive integer.

• -roi is a flag to use only cropped versions of the images around the ROI.
Only usable with mini-MIAS dataset. Defaults to False.

• -v is a flag controlling verbose mode, which prints additional statements
for debugging purposes. Defaults to False.

C.3 Common Pipeline Code Instructions

Run the code:

python main . py [−h] −d DATASET −m MODEL [− r RUNMODE] [− i IMAGESIZE
] [−v]

where:

• -h is a flag for help on how to run the code.

• DATASET is the dataset to use. Must be either mini-MIAS or CBIS-
DDMS.

• MODEL is the model to use. Must be either basic or advanced.

• RUNMODE is the mode to run in (train or test). Default value is train.

• IMAGESIZE is the image size to feed into the CNN model (small -
512x512px; or large - 2048x2048px). Default value is small.

APPENDIX C. USAGE INSTRUCTIONS 80

• -v is a flag controlling verbose mode, which prints additional statements
for debugging purposes.

C.4 Dataset Installation Instructions

C.4.1 mini-MIAS dataset

This example will use the mini-MIAS dataset1. After cloning the project,
travel to the data/mini-MIAS directory (there should be 3 files in it).

Create images original and images processed directories in this directory:

cd data/mini−MIAS/
mkdir imag e s o r i g i n a l
mkdir images proce s sed

Move to the images original directory and download the raw un-processed
images:

cd imag e s o r i g i n a l
wget http :// peipa . e s s ex . ac . uk/ pix /mias/ a l l−mias . ta r . gz

Unzip the dataset then delete all non-image files:

ta r xvz f a l l−mias . ta r . gz
rm −r f ∗ . tx t
rm −r f README

Move back up one level and move to the images processed directory. Create
3 new directories there (benign cases, malignant cases and normal cases):

cd . . / images proce s sed
mkdir ben i gn ca s e s
mkdir ma l i gnant case s
mkdir normal cases

Now run the python script for processing the dataset and render it usable
with Tensorflow and Keras:

python3 . . / . . / . . / s r c / data manipu lat ions /mini−MIAS− i n i t i a l −pre−
pro c e s s i ng . py

C.4.2 CBIS-DDSM dataset

These datasets are very large (exceeding 160GB) and more complex than the
mini-MIAS dataset to use. They were downloaded by the University of St An-
drews School of Computer Science computing officers onto BigTMP, a 15TB
filesystem that is mounted on the Centos 7 computer lab clients with NVIDIA

1mini-MIAS dataset: http://peipa.essex.ac.uk/info/mias.html

http://peipa.essex.ac.uk/info/mias.html

APPENDIX C. USAGE INSTRUCTIONS 81

GPUs usually used for storing large working data sets. Therefore, the down-
load process of these datasets will not be covered in these instructions.

The generated CSV files to use these datasets can be found in the /data/CBIS-
DDSM directory, but the mammograms will have to be downloaded sep-
arately directly from the source. The CBIS-DDSM dataset can be down-
loaded here: https://wiki.cancerimagingarchive.net/display/Public/

CBIS-DDSM#5e40bd1f79d64f04b40cac57ceca9272.

https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM#5e40bd1f79d64f04b40cac57ceca9272
https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM#5e40bd1f79d64f04b40cac57ceca9272

Appendix D

Remote Work Environment

Due to the coronavirus pandemic that started in March 2020, and has been
ongoing since the beginning of this research project (June 2020 to August
2020), work had to be conducted remotely.

D.1 Coding environment

Due to the physical lab machines equipped with the GPUs being inaccessi-
ble during the pandemic, these machines had to be remotely accessed through
SSH. As it is not efficient to implement an entire deep learning pipeline through
a command-line interface, a Jupyter Lab session was created on a lab computer
port and forwarded back to a local personal computer.

This is done by first logging onto the lab machine via SSH, activating the
virtual environment and launching the Jupyter Lab session (these instructions
are added into a bash script to be quickly executed):

ssh agj6@agj6 . host . c s . st−andrews . ac . uk −t ssh agj6@pc5−026− l . c s . st
−andrews . ac . uk

source / cs / s c ra t ch / agj6 / t f 2 /venv/bin / a c t i v a t e
cd ˜/ Pro j e c t s /Breast−Cancer−Detect ion−and−Segmentation
jupyte r lab −−no−browser −−port=8888

Keeping the first SSH session alive, a second terminal session is opened,
and the port forwarding from the lab machine to the personal computer is
carried out using the following command:

nohup ssh −J agj6@agj6 . host . c s . st−andrews . ac . uk agj6@pc5−026− l . c s .
st−andrews . ac . uk −L 8888 : l o c a l h o s t :8888 −N

To prevent the two SSH sessions from being automatically killed, some
SSH settings are added to the “/etc/ssh/ssh config” file, making the personal
computer send a null packet to the lab machine every 5 minutes:

Host ∗

82

APPENDIX D. REMOTE WORK ENVIRONMENT 83

Se rv e rA l i v e I n t e r v a l 300
ServerAliveCountMax 2

Finally, http://localhost:8888 is visited on a web browser to gain access
to the Jupyter Lab interface, containing a menu bar, a file explorer, code editor
and command line for running python files (see Figure D.1).

Figure D.1: Screenshot of the Jupyter Lab interface used to implement the
project.

D.2 Code collaboration

For the group work part of the project, the code was collaboratively written
and version controlled using GitHub, making use of the pull requests and
merging features to combine code written by each group member. The code
developed as a group can be found online on GitHub: https://github.com/
Adamouization/Breast-Cancer-Detection-Code, while the code developed
individually can be found online on GitHub as well: https://github.com/

Adamouization/Breast-Cancer-Detection-Mammogram-Deep-Learning.

D.3 Supervisor meetings

Weekly video meetings with the project supervisor, Dr David Harris-Birtill,
and the project co-supervisor, Lewis McMillan, were planned once per week
via Microsoft Teams. Additional meetings with the other group members,
Ashay Patel and Shuen-Jen Chen, were conducted via Microsoft Teams as
well.

http://localhost:8888
https://github.com/Adamouization/Breast-Cancer-Detection-Code
https://github.com/Adamouization/Breast-Cancer-Detection-Code
https://github.com/Adamouization/Breast-Cancer-Detection-Mammogram-Deep-Learning
https://github.com/Adamouization/Breast-Cancer-Detection-Mammogram-Deep-Learning

Appendix E

Team Meeting Summaries

This appendix contains the summary of the team meetings carried out during
the development of the common deep learning pipeline from 24/06/2020 to
09/07/2020. They include the attendance, the matters discussed and the
tasks set for the next meeting,

84

CS5098 MSc Dissertations
MS Teams Meetings

All meetings were conducted via MS Teams during the development of the common deep
learning pipeline (from 24/06 to 09/07).

Team Members
● Adam Jaamour
● Ashay Patel
● Shuen-Jen Shen

Legend

Colour Task Attendance

 Task completed Attended meeting

 Task incomplete Missed meeting

APPENDIX E. TEAM MEETING SUMMARIES 85

24/06/2020 - MS Teams Meeting #1

Attendance & Task Completion

Name Present Task completed?

Adam Yes N/A

Ashay Yes N/A

Shuen-Jen Yes N/A

Issues discussed & Tasks carried out

● Set out tasks on what to implement for the next meeting for a very basic DL pipeline with
data pre-processing, a pre-trained CNN model and some output visualisation.

● Setup common GitHub repo and working environment in separate branches.
● Queried St Andrews FixIt service for downloading CBIS-DDMS dataset on lab machine.

Tasks set for 29/06

Name Tasks

Adam Data pre-processing using mini-MIAS dataset for now:
● Initial pre-processing (CSV, script to organise images into class folders)
● Create usable dataset (images mapped to labels)
● Resize images for VGG19 CNN model input and split datasets
● (investigate data augmentation)
● (investigate how to remove artefacts)

Ashay Implement VGG19 through Keras (on any data for now). Try 2 models:
● VGG19 on its own (using downsampled images)
● VGG19 with extra convolution/pooling layers using 512px image

Shuen-Jen Take output from any template neural network from TF/Keras and visualise the
output metrics using matplotlib and seaborn
Output metrics to create: ROC, AUC, Overall accuracy to compare with other
papers, Confusion matrix for classification

All Download CBIS-DDSM dataset (send email to FixIt to either download after
connecting to VPN, or to copy from Shuen-jen’s lab computer).

APPENDIX E. TEAM MEETING SUMMARIES 86

29/06/2020 - MS Teams Meeting #2 (code review 1)

Attendance & Task Completion

Name Present Task completed?

Adam Yes Yes

Ashay Yes Yes

Shuen-Jen Yes Yes

Issues discussed & Tasks carried out

● Merged all branches to master
● Combined the output of data pre-processing (Adam) to the input for the VGG19 model

(Ashay)
● Combined the output of the CNN model (Ashay) to the input of the result visualisation

function (Shuen-jen)
● Applied mini-MIAS dataset transformation for Ashay and Shuen-Jen and

tested/debugged full pipeline on GPU, refactored and reorganised some of the code.

Tasks set for 01/07

Name Tasks

Adam Reach out to IT about CBIS-DDSM dataset. Code improvements (normalise
input images, include model name in output figure filename). Update README
instructions for running the code.

Ashay Run training over more epoch for wednesday meeting

Shuen-Jen Formatting the Confusion Matrix

All Research GPU memory usage for multiple training cycles

APPENDIX E. TEAM MEETING SUMMARIES 87

30/06/2020 - MS Teams Meeting #3 (code review 2)

Attendance & Task Completion

Name Present Task completed?

Adam Yes Yes

Ashay Yes Yes

Shuen-Jen Yes Yes

Issues discussed & Tasks carried out

● Stuart replied that the DDSM dataset is available on BigTMP and CBIS-DDSM is still
downloading and will be uploaded right after.

● Merged code and ensured it worked fine
● Checked that the DDSM dataset was accessible from BigTMP

Tasks set for 01/07

Name Tasks

Adam Research gpu memory usage for multiple training cycles
Investigate github commits author issue

Ashay Transforms code & shuffle data when splitting

Shuen-Jen Rotate labels (e.g. 45 degrees)

All N/A

APPENDIX E. TEAM MEETING SUMMARIES 88

01/07/2020 - MS Teams Meeting #4

Attendance & Task Completion

Name Present Task completed?

Adam Yes Yes

Ashay Yes Yes

Shuen-Jen Yes Yes

Issues discussed & Tasks carried out

● CBIS-DDSM dataset successfully downloaded on BigTMP.
● Carry out changes recommended by David:

○ Do not use test dataset
○ Use same train/test/validation splits as other papers
○ Use validation output in confusion matrices

● Presentation:
○ Created presentation slides
○ Rehearsed presentation

No task set

APPENDIX E. TEAM MEETING SUMMARIES 89

02/07/2020 - MS Teams Meeting #5

Attendance & Task Completion

Name Present Task completed?

Adam Yes N/A

Ashay Yes N/A

Shuen-Jen Yes N/A

Issues discussed & Tasks carried out

● Gave our presentation for team DHB.
● Discussed tasks for next week: need to process large CBIS-DDSM dataset rather than

mini-MIAS. Model and outputs are good enough for now and don’t need to be touched.
● Both CBIS-DDSM and DDSM datasets have been downloaded and available at

/cs/tmp/datasets/CBIS-DDSM.

Tasks set for 07/07

Name Tasks

Adam Create dummy data using the mini-MIAS data set (similar CSV to the one
Shuen-Jen is creating)
Research data generators in Keras and batch data processing Ashay

Shuen-Jen Generate CSV file with all paths that we need to use:
● 1st column is path to the image and the 2nd other column is the label
● Use the CSV files that are already split in training/testing sets
● (need to append the /cs/tmp/datasets/CBIS-DDSM to the path)
● https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM#5e40

bd1f79d64f04b40cac57ceca9272

All N/A

APPENDIX E. TEAM MEETING SUMMARIES 90

07/07/2020 - MS Teams Meeting #6 (code review 3)

Attendance & Task Completion

Name Present Task completed?

Adam Yes Yes

Ashay Yes Yes

Shuen-Jen Yes Yes

Issues discussed & Tasks carried out

● Merged code running on CBIS-DDSM dataset.
● Fix predictions for binary tasks (probability instead of class) and test the whole pipeline

on both CBIS-DDSM and mini-MIAS datasets.
● Problems to consider for future code developments:

○ Maintain aspect ratio when resizing
○ Figure output saving, differentiate between binary and multi
○ Monitor accuracy/loss changes for CBIS-DDSM
○ Investigate out of memory warnings (doesn’t appear with small batch size = 5 on

mini-MIAS)

Tasks set for 08/07

Name Tasks

Adam Run basic model on CBIS-DDSM

Ashay Run advanced model on CBIS-DDSM

Shuen-Jen Run basic model on CBIS-DDSM

All Saved outputs to google drive

APPENDIX E. TEAM MEETING SUMMARIES 91

08/07/2020 - MS Teams Meeting #7

Attendance & Task Completion

Name Present Task completed?

Adam Yes Yes

Ashay Yes Yes

Shuen-Jen Yes Yes

Issues discussed & Tasks carried out

● Meeting with David & Lewis
● Can ignore TF warnings
● Improvements to consider (based on David’s suggestions):

○ Future: combine images from the same cases into 2 channels?
○ Instead of resizing image to VGG size, use conv layers at the beginning to resize

(still need to make it square). Resize to 2048x2048px with padding to maintain
aspect ratio, use 2 conv layers with stride 2 to get to 512x512px.

○ Complete the list of papers we are comparing with, including section of image
used (ROI or whole image), type of CNN, dataset used and what type of image
used (everything or just calc/mass/...), image size (original or resized),
training/test/validation split.

No tasks set

APPENDIX E. TEAM MEETING SUMMARIES 92

09/07/2020 - MS Teams Meeting #8

Attendance & Task Completion

Name Present Task completed?

Adam Yes N/A

Ashay Yes N/A

Shuen-Jen Yes N/A

Issues discussed & Tasks carried out

● Merged code refactoring (adam) and large image sizes (ashay) and tested the results.
● Refactored output file names for better organisation.
● Use epoch size 100/50
● Upload all results so far to the shared “results” directory on our shared Google Drive.

Tasks set for 10/07

Name Tasks

Adam Run CBIS-DDSM basic model with large images (batch size 2)

Ashay Run CBIS-DDSM advanced model with large images (batch size 2)

Shuen-Jen Run CBIS-DDSM basic model with large images (batch size 1)
Add 2 papers to the excel sheet of papers

All Setup private repositories to individual development

APPENDIX E. TEAM MEETING SUMMARIES 93

Appendix F

Coding Project Structure

Structure of the individual implementation found in Figure F.1.

94

APPENDIX F. CODING PROJECT STRUCTURE 95

Figure F.1: Screenshot of the project structure.

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Problem Description
	Objectives
	Report Structure

	Context Survey
	Breast Cancer Detection
	Medical imagery screening tests & biopsies
	Early Breast Cancer Detection Systems
	Towards Supervised Machine Learning-based Systems

	Machine Learning Tasks & Algorithms
	Machine Learning Applications to Breast Cancer Detection
	Types of machine learning algorithms
	Types of machine learning tasks

	Comparison of BCD Supervised Learning Algorithms
	k-Nearest Neighbours
	Naive Bayes
	Decision Trees
	Support Vector Machines
	Artificial Neural Networks
	Supervised machine learning algorithms comparison

	CNNs & Deep Learning techniques
	Convolution Neural Networks
	Motivation for CNNs over traditional neural networks
	CNN structure
	CNN Architectures

	Deep Learning Applications in Breast Cancer Detection
	Main challenges
	Transfer learning
	Regularisation techniques
	Technological advances

	Summary

	Ethics & Datasets
	Ethical Considerations
	Datasets Description
	DDSM
	CBIS-DDSM
	mini-MIAS

	Design
	Datasets Decision
	Deep Learning Pipeline Design Analysis
	Data Pre-Processing
	Dataset balance
	Dataset split
	Data loading
	Data normalisation
	Label encoding

	Model Training
	CNN model
	Data fitting

	Result Visualisation
	Overall accuracy
	Precision & recall
	F1 score
	Confusion matrix

	General Design Decisions
	Programming Language
	Deep Learning Framework
	Interface

	Design Decisions Summary

	Implementation
	Code Design
	General
	Command-Line Interface
	Results reproducibility

	Data Pre-Processing
	Initial Dataset Processing
	Data Loading
	Data Processing
	Dataset Splits
	Data Augmentation & Class Balance

	Model Training
	Sequential Model
	Training Steps
	Model & Weights Saving

	Predictions & Results visualisation
	Pipeline Flowchart

	Results & Evaluation
	Test Data
	Model Used
	Baseline Results
	Base CNN Architectures
	Class Imbalance
	Data Augmentation
	Class Weights

	Input Image Size
	Varying Amounts of Transfer Learning
	Mammogram Types
	Results Summary

	Conclusions
	Achievements
	Code Availability
	Limitations
	Future Work
	Reflections

	Bibliography
	Ethical Application Approval Letter
	Languages & Frameworks Comparison
	Programming Languages
	Deep Learning Frameworks

	Usage Instructions
	Installation Instructions
	Individual Code Instructions
	Common Pipeline Code Instructions
	Dataset Installation Instructions
	mini-MIAS dataset
	CBIS-DDSM dataset

	Remote Work Environment
	Coding environment
	Code collaboration
	Supervisor meetings

	Team Meeting Summaries
	Coding Project Structure

