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Abstract

Manual brain tumour segmentation is a difficult and time consuming process
which needs to be completed by an experienced radiologist as zero error is allowed
to occur in this process. This task is especially difficult as brain tumours vary
in size and location and have a tentacle-like structure with which they infiltrate
the surrounding healthy tissue. The aim of automatic brain tumour segmentation
is to assist certified clinicians in the brain tumour segmentation process and the
consequent patient diagnosis and treatment. Even though no fully automated seg-
mentation procedure is deployed in industry, there is progress in the application of
deep neural networks for brain tumour segmentation. This project presents three
models which were able to achieve brain tumour segmentation with their perfor-
mance being measure with a Dice score metric per tumour region. These are, a
2D U-Net developed by the group, an individually developed 2D U-Net and a 3D
U-Net. Dice scores of the best overall performing model, the 3D U-Net model,
are: 0.7960, 0.6001, 0.4368 and 0.6396, 0.8581, 0.8181 for whole tumour, tumour
core and enhancing tumour on low-grade gliomas (LGG) and high-grade gliomas
(HGG) data respectively.
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1 Introduction
This is a group project which aims to implement deep learning to perform brain tu-
mour segmentation of Magnetic Resonance Imaging (MRI). This project will focus on
the analysis of a publicly available, open source Multimodal Brain Tumour Image Seg-
mentation Benchmark (BraTS) [35], [3], [4], [5], [6] benchmark data set [22]. Ethical
approval has been received for this project as described in Section 1.2. The School
of Computer Science GPU lab client machines were used to develop both the group
model and my individual model implementations. The main results of this project are
a literature review, given in Section 2, and the consequent development of three deep
neural network algorithms for the segmentation of brain tumour MRI images. The fist
neural network has been developed by the group consisting of Carina Norregaard (ma-
triculation number: 150004238) and Neha Ghatia (matriculation number: 190024130)
and I. We implemented a 2D U-Net adaptation of [48]. The two consecutive deep neu-
ral network algorithms we developed as part of my individual work. These consist of
the convolutional neural network implementations, namely a two-dimensional U-Net
implementation based on the work of [46] and the subsequent three-dimensional U-Net
implementation which was also based [46]. This model uses two slices of volumetric
information for neural network training and evaluation. The performance of each of the
algorithms was measured using the Dice score metric. Furthermore, the Dice scores
were mearured per each individual tumour region (the multi-class case) [55]. As can
be seen from Table 15 in Section 5.4, the result Dice scores achieved by these models
are comparable to state-of-the-art techniques. Furthermore, the [46] based 3D U-Net
implementation seems give the best performance results due to its the best overall per-
formance for both the 210 high grade glioma (HGG) [55] and 75 low grade glioma
(LGG) [55] data when evaluated on the BraTS 2018 Challenge test set as described
in Section 1.3. The final results of the three U-Net implementations are provided in
Table 16 and illustrated in Figure 16 of Section 5.5. Sample images of brain tumour
segmentation per one patient are provided in Section 5. Figure 13 shows low grade
glioma (LGG) [55] data while Figure 15 shows samples of high grade glioma (HGG)
[55]. Even though these are sample images and the segmentation is performed across
the data set, these figures help to visualise and illustrate the performance of the mod-
els that has been measured in Dice score. In the clinical context, using convolutional
neural networks to accomplish brain tumour segmentation may assist radiologist by
performing automatic brain tumour segmentation, thereby saving time [15] and assist-
ing to circumvent any possible brain tumour segmentation variability [64] that may
occur in manual human based brain tumour segmentation [64].

1.1 Project Objectives
The aim of this project was the application of deep learning techniques to the Multi-
modal Brain Tumour Image Segmentation Benchmark (BraTS) [35], [3], [4], [5], [6]
benchmark data set [22], in order to survey and improve the classification and segmen-
tation of brain tumours within magnetic resonance imaging (MRI) brain images.

This is a group project where the primary objectives include an initial pipeline
implementation and secondary objectives entail the subsequent deep learning algorithm
implementations as shown in detail in Figure 11 in Section 3.

The implementation of the primary objectives which entail the initial pipeline was
completed as a group and consisted of a BraTS brain tumour magnetic resonance imag-
ing (MRI) image data segmentation implementation and entailed the loading in of the
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data, data pre-processing together with the implementation and evaluation of a brain
tumour segmentation algorithm. This initial pipeline was completed as a group, while
the consequent implementation of deep learning algorithms including their specific ma-
chine learning architectures were completed individually. This is shown in Figure 11in
Section 3. The details of the segmentation algorithm used for the initial pipeline imple-
mentation and the individual tasks were identified and guided by the literature review
as presented in Section 2.

The following project objectives were identified:

1.1.1 Primary Objectives

• Complete a literature review which surveys the state of the art on the topic of
Brain Tumour Segmentation (in MRI) using deep learning and formulate re-
search questions.

• Implement a pipeline that will read in and pre-process the data from the open
source data set (BraTS) [35], [3], [4], [5], [6].

• Create a segmentation of brain tumour images with an implementation of a seg-
mentation algorithm.

1.1.2 Secondary Objectives

• Create a segmentation of brain tumour images with a re-implementation of an
existing algorithm as identified in the literature review.

• Implement more advanced algorithms or optimise existing deep learning algo-
rithms to possibly find a novel solution for Brain Tumour Segmentation.

• Compare the performance and results of algorithms and the deep learning tech-
nique implementation from both my own model analysis and the results achieved
by the team.

1.2 Ethical Considerations
Ethical approval for this project has been received with the following corresponding
Approval Code CS14954. The full ethics approval document has been appended to
the appendix and is found in Appendix A.1 at the end of this document. The Multi-
modal Brain Tumour Image Segmentation Benchmark (BraTS) [35], [3], [4], [5], [6]
benchmark data set [22], is an open source publicly available data set which has been
provided on the website of the Perelman School of Medicine at the University of Penn-
sylvania [43]. This data is available from:

http://braintumorsegmentation.org/.
The BraTS data was obtained by completing a request for access through a regis-

tration on the CBICA Image Processing Portal (available at: ipp.cbica.upenn.edu) and
consequently acquiring the required permission to download the BraTS data set as per
the instructions provided on [44].
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Figure 1: An illustration of the BraTS 2018 data set MRI modalities. The structural
modalities left to right are: T1, T1c, T2, FLAIR, together with the ground truth (GT)
segmentation. Tumour sub-regions are displayed per colour, with green: edema, yel-
low: enhancing tumour, and red: necrotic and non-enhancing tumour core. [55].

1.3 Data
The Multimodal Brain Tumour Image Segmentation Benchmark (BraTS) [35], [3], [4],
[5], [6] benchmark data set [22] includes the brain tumour segmentation BraTS 2018
Challenge data set [43]. The BraTS 2018 Challenge data was chosen to be used for
this project as this is the BraTS 2018 data set used by [55] as identified in the literature
review in Section 2. The BraTS 2018 data set contains glioma brain tumour MRI
images [55]. Gliomas are discussed in further detail in Section 2.1. The BraTS 2018
data set contains the MRI images of 210 high grade glioma (HGG) patient cases and
75 low grade glioma (LGG) patient cases [55]. For each patient in the BraTS 2018
data set, the data includes for each subject the four magnetic resonance imaging (MRI)
structural modalities, namely T1, T1c, T2, and FLAIR, together with the segmentation
files containing pixel-wise annotated, complete tumour ground truths (GT) images [55]
as shown in Figure 1.

As described in [33] the images in of the BraTS 2018 data set are skull-stripped and
were manually segmented with the approval of experienced neuro-radiologists [33].
Labels were assigned per target class with tumour core, peritumoral edema and en-
hancing tumour assigned labels 1, 2, 4 respectively [33]. While each of these four
target classes are independent, there is an encompassing relationship between them as
shown in Figure 2 [70].

All the BraTS multimodal brain scan files are provided in the format of NIfTI
(.nii.gz) [43]. NIfTI (Neuroimaging Informatics Technology Initiative) [38] files store
MRI data with the correct brain image orientation which allows the correct identifica-
tion of both sides of the brain [38]. Figure 3 displays an in-depth visualisation of a
FLAIR image using the ITK-SNAP tool developed in [66].

These modalities are considered to be the standard MRI image classifications used
in the diagnosis of glioma, where T1-weighted MRI (T1) are used for the identification
of healthy brain tissue [22]; followed by T2-weighted MRI (T2) images used to delin-
eate the edema tumour regions which produce a bright signal on the MRI image [22]
together with the Fluid Attenuated Inversion Recovery (FLAIR) MRI images which as-
sist in highlighting the difference between the tumour edema region and Cerebrospinal
Fluid (CSF) [22] as these images are taken in such a way that the signal produced by
water molecules are suppressed thereby creating this contrast on the image [22]. The
development of the BRATS benchmark data set, which is used for automatic brain
tumour segmentation, has allowed for an objective comparison of various glioma seg-
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Figure 2: The relationship between the four tumour target classes as illustrated in [70].
The labeled classes of tumour are independent of each other with a containing relation-
ship between four of the target classes [70]. These relationships are as follows: tumour
core contains enhancing tumour, non-enhancing tumour and necrosis, complete tumour
contains tumour core and edema [70].

mentation methods to take place on a set of common data [22].
The BraTS 2018 Challenge data is a training data set [43] and furthermore, accord-

ing to [22], the testing data of this data set contains brain tumour scans of undetermined
ground truths, with the evaluation on the BraTS test data only being possible through
an online evaluation tool [22]. It is for this reason that in the implementation of this
project our group solution implementation and later my two individual model imple-
mentations used a splitting of the BraTS 2018 training data set, containing the data
of 285 patients [55], into further separate validation and testing sets. The BraTS test
data presents results using metrics in the form of a Dice Score, Sensitivity and Speci-
ficity for the evaluation of the principle tumour regions [22]; namely the whole tumour
(comprising of all tumour components) [22], the core tumour (comprising of all tu-
mour components except for the edema) and the active tumour (comprising of only
active cells) [22]. For each of the three tumour regions the Dice score is given by the
following equation [22]:

Dice(P, T ) =
|P1 ∧ T1|

(|P1|+ |T1|)/2

where P1 represents voxels of the predicted tumour area (which is the result of an
applied segmentation algorithm) and T1 is the actual tumour area as indicated in the
provided ground truth MRI images [22]. The dice score is then calculated for each
tumour region where the intersect symbol represents the logical AND symbol and the
absolute symbol shows the set size as the number of voxels that belong to that set
[22]. Furthermore, the Dice score is identical to the F measure [17]. The F measure is
also referred to as the F1 score [49] which is also known as the dice coefficient (DSC)
[18]. The Dice coefficient is metric which measures the overlap between what has been
predicted and the ground truth [25] as illustrated in Figure 4. This metric has a range of
0 to 1 where a complete overlap between the prediction and ground truth is represented
by 1 [25]. Specificity is a true negative rate or a ratio of negative class instances which
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Figure 3: BraTS 2018 data set FLAIR MRI modality image examined from the ITK-
SNAP tool developed by [66] to assist with exploring the data set images.
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Figure 4: Dice coefficient illustration provided by [25].

are correctly classified as negative, while Sensitivity is the metric describing the true
positive rate or a ratio of positive instances which have been correctly identified by the
classifier [13].

1.4 Background
1.4.1 Image Segmentation

Image Segmentation requires an algorithm to identify both the location and shape of
the object which a model has been trained to recognise [25]. Labels are required to be
assigned to every pixel of the image, such that pixels with the same label belong to one
object [25]. Image segmentation models are able to accurately identify an object found
in an image [25]. The differences between Image Classification, Object Detection and
Image Segmentation are illustrated in Figure 5 by [25]. Image Classification performs
image content classification by identifying whether an type of object is present within
an image [25]. This would be, for example, done by predicted whether a cat object is
present in an image [25]. Object Detection identifies where an object is location within
an image [25] and this would be, for example, done by predicted where a cat object
is present in the image [25]. In Image Segmentation, however, a pixel-wise mask is
created for each object that is present within an image in order to identify each object
[25]. In this way every pixel of an image is classified with the corresponding labels in
order to find both the outline and the location of each object present within the image
[25].

1.4.2 Deep Learning Methods

Deep Neural Networks (DNN) are an example of deep learning methods used for brain
tumour segmentation [17], in particular the use of Convolutional Neural Networks
(CNN), which are a specifically designed type of DNN that is suitable for image data
analysis [17].
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Figure 5: Image illustrating Image Classification, Object Detection and Image Seg-
mentation as given in [25].

Figure 6: Illustration of the different CNN layers with their respective receptive fields
as presented in [13].

1.4.3 Convolutional Neural Networks (CNNs)

CNNs complete complex visual tasks such as image searches and video classification
[13]. Furthermore, these neural networks are also able to perform voice recognition and
natural language processing [13]. As shown in Figure 6, CNNs consist of a number of
convolutional layers with each layer processing a section of the input image, namely
the pixels of the input image found within their receptive fields [13]. In order for each
convolutional layer to have uniform width and height dimensions, zero padding is used
[13]. This is the process of adding zeros added around the input [13]. These layers
detect patterns found within an image by sliding across the image with convolution
kernels or filters [13]. Filters are matrices of numbers [13]. An example is a matrix of
zeros with a central column of ones which represents a black square that has a white line
along the middle [13]. Each convolutional layer that uses a filter will output a feature
map which will show features of the original image which had the most effect on the
activation of that filter [13]. The most suitable filters for a given task are identified by a
convolutional layer durring training [13]. The convolutional layer within CNN models
allows the neural net architecture to stack several layers with each layer extracting
features from preceding layers thereby creating a feature map [17]. Figure 7 illustrates
the combined effect of two feature maps [13].
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Figure 7: Illustration of the combined effect of two feature maps as given in [13].

2 Literature Review

2.1 Clinical Background
A brain tumour may be described as a set of abnormal cells which grow in the brain
and are characterised by the way they reproduce in an uncontrolled manner [7]. There
are several types of brain tumours which occur in adult patients, these may be classified
as either benign tumours or malignant tumours [7]. Benign tumours are noncancerous,
and are characterised by their less aggressive nature, forming slowly and staying iso-
lated from the normal brain tissues surrounding them as benign tumours do not spread
to other regions of the brain or other parts of the body[7]. The malignant type of brain
tumours, however are cancerous and these tumour types are the more dangerous cell
structures as they infiltrate the surrounding tissue regions [7]. The most frequently oc-
curring malignant or cancerous type of tumours occurring in adult patients are Gliomas
[33].

These types of tumours begin to occur within cell structures known as glial cells,
which surround nerve cells and assist nervous cell functionality by providing both
structural support and insulation [23]. There exist different types of glial cells and
tumours which occur within each type of glial cell are each given a unique classifica-
tion according to their cell of origin [16]. The first type of glial cells are called astro-
cytes and tumours which occur in these cells are classified as astrocytoma, anaplastic
astrocytoma and glioblastoma [16]. The second type of glial cells are known as oligo-
dendrocytes [23] and tumours which begin in this type of cells are called oligoden-
drogliomas [16]. The third type of glial cells found in the brain are ependymal cells
[59] and tumours which occur within these structures are known as ependymomas [16].
Glioblastoma Multiforme (GBM) is the term used to describe the most malignant and
prevalent types of primary astrocytomas [17]. In order to further assist with the clas-
sification of gliomas, the World Health Organisation (WHO) applies an international
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standard nomenclature for the diagnosis of gliomas [16]. Gliomas are thus classified
into grade I to IV according to their rate of growth and malignancy level as determined
per a histopathological criteria [16]. Grade I gliomas are slow growing and it is possi-
ble to remove these tumours with surgical procedure, while fast growing tumours are
classified as grade II to IV gliomas and are both invasive and highly malignant with the
most aggressive and invasive type of glioma tumours classified as grade IV astrocy-
tomas and referred to as Glioblastoma Multiforme (GBM) [16]. It has been found that
patients with the slower growing, less aggressive low grade tumours such the astrocy-
tomas or oligodendrogliomas may have a further life expectancy of several years [33],
while those patients with more aggressive, high grade glioma tumours have a life ex-
pectancy of approximately fourteen to fifteen months from the time of diagnosis [17].
In both groups of patients, intensive neuroimaging protocols are used both prior to and
after treatment in order to evaluate whether the cancer continues to grow or spread and
establish the effectiveness of the chosen treatment strategy [33].

Being able to occur within any region of the brain, glioma tumours vary in size and
shape, contain tentacle-like structures with which they are able to infiltrate surrounding
tissue the extension of which is difficult to identify and locate, and having a low level
of contrast with surrounding cells makes them difficult to localise and segment from
the healthy brain tissue and other brain artefacts [33]. Magnetic Resonance Imaging
or MRI is a noninvasive medical imaging technique used for clinical diagnosis which
produces high spatial resolution images that are able to identify a high level of contrast
between soft tissues [7]. For this reason the majority of brain tumour diagnosis and the
precise identification of their exact position and boundaries is done using MRI images.
[7]. Furthermore, glioma tumours are difficult to distinguish from the normal brain
tissue surrounding the tumours as the tumour intensities overlap with the intensities of
their surrounding tissues and thereby tumours delineation becomes particularly diffi-
cult along the tumour borders [7]. Additionally, the edges of tumours are identified by
the intensity of changes as seen between the healthy tissues and tumour effected cells
which is conducted as accurately as possible with manual studies of brain tumour mag-
netic resonance imaging (MRI) scans by expert radiologists [33]. Brain tumour seg-
mentation is the process of detection and extraction of the tumour region from healthy
brain tissues [7]. Accurate and effective segmentation of brain tumours is a challenging
task as brain tumours appear in different locations in the brain, their shape varying in
size, appearing as nonrigid, complex structures with various appearance properties.[7].

The brain tumour segmentation methods are currently classified into the categories
of manual segmentation, semiautomatic segmentation and fully automatic segmenta-
tion according to the degree of manual human intervention required for each segmen-
tation task [15]. Due to the high level of accountability and responsibility required
from the accuracy of segmentation, the current methods used in industry rely mainly
on manual or semi automated techniques as zero degree of error in image analysis inter-
pretation is acceptable [15]. This is both a difficult and time consuming process which
needs to be completed by a radiologist [22]. Furthermore, in manual segmentation
human experts such as radiologists, anatomists and trained technologists are required
to not only make use of the information presented in each image but also rely on ad-
ditional knowledge of the anatomy and the selection of the tumour region, which is
referred to as the region of interest (ROI) [15]. This is not only a tedious and time
consuming task as the human expert needs to manually draw tumour regions on each
slice [15], but the images presented to the human expert view show the data as a se-
ries of two-dimensional slices thereby limiting their ability in using three-dimensional
information for the segmentation task as three-dimensional based modeling of struc-
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tures for the extensive range of views of these anatomical objects is not available [15].
Additionally manual segmentation is dependent on the individual radiologist and the
segmentation results vary [64].

Therefore fully automated and highly accurate analysis of these types of brain tu-
mour scans which would be able to reproduce the measurements of tumour structures
would greatly assist doctors in the diagnosis and treatment of patients [33]. The task
of brain tumour segmentation consists of separating the brain tumour tissue modali-
ties including the solid or active tumour, edema, and necrosis from the other, normal
brain tissues which consist of gray matter (GM), white matter (WM) and cerebrospinal
fluid (CSF) [15]. This task of fully automatic segmentation is difficult due to the fact
that abnormal tissue of tumours are structures with a complex three-dimensional shape
which are not uniform and have a high degree of variation in both size, position, den-
sity [15]; while the image segmentation process requires an image to be partitioned in
a uniform way such that each image region is related to each other region in such away
as not to coincide [15]; with each region being homogenous and adhering to a certain
set criteria [15]. Which means that few features such as tumour anatomical knowledge,
expected location, size, contour appearance and shape, or possibly bilateral symmetry
are available that would be able to serve as a basis for the facilitation of automatic seg-
mentation methods [15]. Furthermore automatic brain tumour segmentation models
are required to not only have the ability to accurately describes the size, shape, location
and appearance of each brain tumour but also be able to account for variations of these
characteristics that are expected in practice [15]. According to [15] currently the is
no completely automatic segmentation method which has been adopted for use in the
clinic environment [15].

2.2 Segmentation Methods and Algorithms
Several methods and approaches have been explored and implemented in order to
achieve this type of fully automatic brain tumour segmentation [15]. These include
region-based techniques such as Watershed and pixel classification methods which, in
brain tumour segmentation, use either supervised or unsupervised classifiers to group
the pixels within a given feature space [15]. Supervised segmentation methods require
a set of manually labelled training data on which the algorithm will run the initial
training phase during which the model learns the features of the data set from the
provided labels [15]. This process will consequently enable the model to apply this
knowledge to unseen data during final model performance testing [15]. As the BraTS
data set specifically contains labelled ground truth data per patient [33], the focus in
this literature survey will be on supervised segmentation methods. Unlike supervised
segmentation methods, unsupervised methods do not require manually labelled train-
ing data and implement algorithms that automatically group together similar pixels
[15]. In this way image-based features such as intensities and textures are identified
and the original image becomes divided into homogeneous regions [15]. In this way
the number of required classes is found as each homogeneous region falls into one of
these classes [15]. However, there exist several disadvantages when using unsuper-
vised techniques for image segmentation [47]. These include the need to pre-specify
the number of regions, the possibility of tumours being divided into further multiple
regions and the lack of textural boundaries or clearly defined intensities within tumours
[47]. Supervised segmentation methods include deep learning methods which imple-
ment convolutional neural networks [40]. These have proven to work more effectively
than watershed methods [40] and have become the state-of-the-art segmentation meth-
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ods in automatic segmentation [62]. An analysis of the state-of-the-art approaches is
provided in further detail below.

2.3 State-of-the-Art
2.3.1 U-Net

An example of a successful deep neural network is the U-Net [46]. The U-Net is a
Fully Convolutional Network (FCN) which was specifically developed for the segmen-
tation of biomedical images within the field of image recognition [46]. In this filed a
network is required to assign class labels per pixel while a large number (thousands
[25]) of training images may not be available for network training [46]. The convolu-
tional computation within a CNN reduces the spacial dimensions of the original image
and becomes a problem as these dimensions are required for object segmentation [46].
In order to solve this problem a fully convolutional neural network is required to pre-
serve input dimensions by using upsampling and downsampling techniques to replace
pooling [29].

The U-Net was developed as an improvement on the work of [12] who used a neu-
ral network for the segmentation of electron microscopy images [25]. The approach
by [12] used a sliding-window to make per-pixel class label predictions by choosing
as input the local region (called a patch) found around each pixel [25]. This approach
has limited network speed as the sliding window needed to scan every patch and cre-
ated redundancy due to overlapping of patches [25]. The U-Net implementation was
able to modify the segmentation process [46]. As illustrated in Figure 8, the U-Net
implements a U-shaped architecture of a convolutional neural network created by the
number of feature channels being used in the upsampling operations such that the ex-
pansive and contracting paths are symmetrical [46]. This means that the U-Net, a fully
convolutional network architecture, contains two paths that form the U-shape [28]. The
first path is the contraction path (which is called the encoder) and the second path is
a symmetric expanding path (which is called the decoder) [28]. Consisting of stacked
convolutional and max pooling layers the encoder is used to process the context of an
image [28]. Each convolution process is activated by a ReLU activation function [46].
In this way all features are mapped to a single output vector [46]. The Decoder is
used to create a high resolution segmentation map [28]. Intuitively in the encoder the
model identifies what is present in the image, but it loses the information of where it
is present, while the decoder recovers the where information (using precise localiza-
tion) [28]. The U-Net will output whole, high resolution images with fully classified
pixels [28]. Additionally this neural network has no fully connected layers and the
segmentation map consists of only the pixels for which the input image has full context
[46]. This technique is able to perform clear-cut image segmentation using few training
samples [25]. This is advantageous in brain tumour segmentation as the acquisition of
annotated medical images is difficult [25].
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Figure 8: An illustration of the U-Net network architecture as given in [46].

2.3.2 V-Net

Similar to the U-Net neural network, the V-Net is a fully connected convolutional neu-
ral networks which was especially developed for 3D volumetric medical image seg-
mentation [36]. In Figure 9, the V-Net neural network architecture is provided [36].
While other approaches process three dimensional input images by analysing two di-
mensional images slice-by-slice and then stacking these to form 3D volumes, the V-Net
uses 3D convolutions to segment 3D volumetric data holistically [36]. In medical vol-
umes such as the tumour images, the anatomy of the region being investigated occupies
a region of the scan with the rest consisting of the background [36]. This may cause
the neural network to reach a local minima where the network predictions are biased
towards the image background [36]. In this situation the foreground region of interest
will either be missing or be partially detected [36]. An advantage of this model is this
model’s dice loss layer, which does not need samples to be re-weighing when the num-
ber of background and foreground pixels is unbalanced and is useful for application in
binary segmentation tasks [36].

2.3.3 InputCascadeCNN

Another example of a successful application of the Convolutional Neural Networks
(CNN) to the open source BRATS dataset has been implemented by [17]. Their model,
the InputCascadeCNN network implemented a fully automated method the results of
which had been ranked second on the BRATS 2013 scoreboard giving Dice score val-
ues of 0.84, 0.71 and 0.57 for whole tumour, tumour core and enhancing tumour re-
spectively [17]. This work included a novel implementation of a network architecture
where two pathways are implemented allowing the model to learn about both the de-
tails of the brain and the larger context of the dataset [17]. According to [17] machine
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Figure 9: An illustration of the V-Net network architecture as given in [36].

learning methods are constrained by the fact that they perform pixel classification while
not taking into account the local dependencies of labels [17]. An example of this can
be illustrated by how segmentation labels are conditionally independent for a given
input image [17]. This may be overcome by using pixel-wise probability estimates of
the initial CNN as input to a second DNN creating a cascaded architecture [17]. The
InputCascadeCNN neural network implemented by [17] used this principle to create a
faster model which completed segmentations at a speed of between twenty five seconds
and three minutes [17].

2.3.4 First Position in the Brain Tumour Segmentation Challenge 2013

A novel CNN-based approach by [42] achieved the first position in the Brain Tumour
Segmentation Challenge 2013 (BRATS 2013) with Dice Similarity Coefficient values
of 0.88, 0.83, 0.77 for whole tumour, tumour core, and enhancing tumour regions re-
spectively [42]. The same model achieved second place in the BRATS 2015 Challenge,
with Dice Similarity Coefficient values of 0.78, 0.65, and 0.75 for whole tumour, tu-
mour core, and enhancing tumour regions respectively [42]. Data augmentation was
used to address the variability present in brain tumour spatial localisation and structural
composition [42]. Furthermore, in order to address the challenge of data variability, the
patches of MRI input images were normalised to obtain zero mean and unit variance
[42]. As the appearance and composition of LGG and HGG tumours differ, to address
the variability present in intra-tumoural structures the designed CNN modified the nor-
malisation of each tumour grade, LGG and HGG, was completed independently [42].
A deeper CNN architecture was used for HGG than LGG as the results for LGG were
not improved by a deeper network implementation [42]. According to [42], deeper ar-
chitectures have shown to increase over-fitting on a small LGG dataset ([42] reported
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to have 10 and 54 patient scans in the training set of BraTS 2013 and BraTS 2015
respectively) due to the larger number of layers with weights [42]. Furthermore, LGG
data requires the use of Dropout [52] regularisation to reduce over-fitting which is not
the case for HGG data [42].

As stated in [42], 3D filters make use of the information present in three-dimentional
(3D) images at the cost of an increase in computational load [42]. This approach used
pooling to combines features of feature maps which are close together creating a com-
pact image representation and decreases the computational load [42].

2.3.5 DeepMedic

As stated by [68], both [42] and [17] implemented CNNs that predict the central voxel
labels of a patch. Due to the larger number of parameters and three-dimensional (3D)
convolutions present in three-dimensional (3D) CNNs, there is an increase in both
memory and computational load in these neural networks [26]. However [72] has
found that an increase in parameters had made an improvement in neural network per-
formance as illustrated by the difference between the segmentation performance results
of the VNet implementation by [72] when compared to their implementations of neural
networks called VNet+ and VNet++ [72]. The performance on lung nodule segmen-
tation was measured as Intersection over Union (IoU), giving results of 71.17, 75.93
and 76.24 for each network, which had 22.6 million, 25.3 million and 26.2 million
parameters respectively [72].

In order to reduce this computational burden [26] developed the DeepMedic model
[68]. As described by [26], DeepMedic is a dual path three-dimensional (3D) CNN
which has a depth of eleven layers.

2.3.6 Two-stage Cascaded U-Net

The current top performing CNN, which received first place in the Multimodal Brain
Tumour Segmentation Challenge (BraTS) 2019 segmentation task challenge, is a novel
two-stage cascaded U-Net implementation developed by [24]. This segmentation method
was trained on the BraTS 2019 training dataset and achieved average Dice scores of
0.88796, 0.83697, 0.83267 for whole tumour, tumour core and enhancing tumour re-
spectively, when evaluated on the BraTS 2019 testing set [24].

The first stage of this two-stage cascaded U-Net uses a version of a 3D U-Net
implementation to train the network to produce a coarse prediction [24]. In the second
stage a 3D U-Net of increased width is used with the addition of two decoders [24].
The role of the second stage is to refine the prediction map and produce a segmentation
map of higher accuracy [24].

An advantage of this approach includes the prevention of model over-fitting by im-
plementing data augmentation [24]. This was done by first implementing a per channel,
random intensity shift of the channel standard deviation [24], which was accompanied
by a random scaling intensity for the network input [24]. The input images where then
cropped and a random flipping with a fifty percent probability was completed along the
three dimensional axes [24].

The disadvantage of this two-stage cascaded U-Net is the amount of memory this
network requires [24] as the input images needed to be cropped from a size of 240
x 240 x 155 voxels down to 128 x 128 x 128 voxels in order to overcome memory
limitation [24]. Furthermore training of this method requires more than 12 Gigabytes
of memory when completed on a Nvidia Titan V GPU [24]. Additionally [24] report
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that performance variability was present between the performance of each individual
model [24].

2.3.7 Deep Convolution Neural Network (DCNN) Techniques

The second place on the BraTS 2019 challenge was achieved by [67] who applied
a combination of Deep Convolution Neural Network (DCNN) techniques to three-
dimensional brain tumour segmentation [67]. This DCNN achieved the following Dice
score results on the BraTS2019 online testing set: 0.883 for whole tumour, 0.861 for
tumour core and 0.810 for enhanced tumour core [67]. The methods used to produce
the overall method which was submitted for the challenge are a combination of four
techniques which where consecutively applied to a U-Net [67].

An in depth analysis and explanations of each of these techniques and the combina-
tion used to produce this overall DCNN brain tumour segmentation method is further
described in [67].

Each individual technique is designed and aimed at solving the challenges found in
three-dimensional brain tumour segmentation [67]. These challenges may be divided
into three main categories: data processing due to data imbalance, model architecture
and model optimisation [67]. The respective techniques for these challenges, are de-
scribed in detail in [67].

As discussed in Section 2.3.5, in brain tumour segmentation a significant number
of background voxels is present in training data [67]. These are easily predicted by the
classifier, therefore in order to reduce their effect a heuristic method is used in which
patches of the input MRI image are randomly cropped and the image containing the
most foreground voxels is used as input to the model [67]. Another approach to this
challenge is using large image patches in order to include more contextual informa-
tion [67]. This approach requires the use of small batch size that lead to increase in
stochastic gradient variance which reduces optimisation, while larger batches reduce
the patch size [67]. However by altering the number of padding and cropping layers
present between the convolution layer, a model is able to learn the comprehensive in-
formation from both the largest patch and the texture from small patches with identical
parameters [67].

Another solution presented by [67] addresses the improvement of model accuracy
through model architecture design. While multiple prediction results may be combined
to improve accuracy, [67] present a novel architecture which takes predictions at every
scale of a U-Net and joins these into a single output [67]. Furthermore, while this
process may become memory intensive as prediction tensors are up-sampled to the
largest size, [67] combines the predictions recursively.

While becoming complex as a result of the implementation of all these techniques
into a single model, this model combines their benefits of addressing data imbalance
challenges, model architecture development and optimisation methods [67].

As reported by [67], the false predictions which this model makes on small anatom-
ical regions is a limitation of this model.

2.3.8 DeepSCAN

The third place on the BraTS 2019 challenge was achieved by [32] who implemented
a modified version of the DeepSCAN CNN presented in [31]. On the testing set this
modified version of DeepSCAN achieved mean Dice scores of 0.89 for whole tumour,
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0.83 for tumour core and 0.81 for enhancing tumour [32]. The model architecture is
modified by replacing Batch normalisation with Instance normalisation [32].

The DeepSCAN network architecture mainly consists of two-dimensional convo-
lutions with three-dimensional initial network convolutions provided for 3D context
[32]. The network therefore contains an anisotropic receptive field which allow it to
use the symmetries present in the human brain for predictions and the CNN is trained
on sagital, coronal, and axial brain views [32]. The final network results are an ensem-
ble of predictions of these three brain views [32]. A heteroscedastic loss function as
described in [31] is used for DeepSCAN training [32].

The DeepSCAN CNN successfully performs standardisation and homogenisation
on input data, with nonzero intensities being standardised across individual volumes,
which facilitates optimal CNN learning [32]. The imbalance between the background
and foreground present in the input data is resolved with the implementation of a fo-
cal loss function in the heteroscedastic networks [32]. The results of the DeepSCAN
classifiers are filtered based on tumour biology [32]. This includes addressing the chal-
lenge found predominantly in LGG data when no tumour core is detected [32]. In this
case it was accepted that the whole tumour consists of tumour core [32].

The third place on the BraTS 2018 challenge was a tie between the implementa-
tion of DeepSCAN by [31] and the submission by [68]. On the BraTS 2018 testing
set DeepSCAN achieved mean Dice scores of 0.88593 for whole tumour, 0.79926 for
tumour core and 0.73189 for enhancing tumour [31]. This novel approach uses a shal-
low symmetrical U-Shaped network consisting of densely connected blocks and dilated
convolutions [10]. Additionally [31] present a novel loss function used to address both
uncertainty and label noise [10].

This implementation of the DeepSCAN network is an improvement in memory
efficiency of an earlier version of the DeepSCAN network presented in [30]. The
DeepSCAN network of [30] is based on the Densenet architecture by [19], in which
dense blocks and non-densely connected convolutional layers called transition blocks
are combined to restrict parameter explosion by restricting the input size per dense
block [31]. The DeepSCAN network developed by [30] has no pooling operations and
the network may be viewed as a single dense block as there are no network transition
layers [31]. Instead, the dilated convolutions of this network by [30] expand the clas-
sifier receptive field [31]. While this is an advantage over the U-net, the limitation of
this approach is memory consumption as the final segmentation image is the result of
all feature maps being present [31]. The limitation is addressed by using a pooling-free
dense net inside a U-Net CNN architecture [31]. This solution improves memory effi-
ciency as the dense net operates at a lower resolution inside the U-Net shaped network
[31].

Evaluation of the CNN implementation by [68] on the BraTS 2018 testing set
achieved Dice scores of 0.8842 for whole tumour, for 0.7960 tumour core and 0.7775
for enhancing tumour [68]. Multiple deep neural networks were combined by [68] in
order to reduce model over-fitting in segmentation [10]. The different models used
for this implementation include an implementation of modified versions of the three-
dimensional FusionNet by [45], the OM-Net by [69], and a three-dimensional MC-
baseline network by [71] which are described in detail in [68] and in [45], [69] and
[71] respectively.
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2.3.9 Second Place on the BraTS 2018 Challenge

The second place on the BraTS 2018 challenge was achieved by a modified U-Net
implemented by [21], giving Dice scores of 87.81 for whole tumour, 80.62 for tumour
core and 77.88 for enhancing tumour, when evaluated on the BraTS 2018 testing set
[21]. This result was achieved by optimising the network training process [10] of a
modified three-dimensional U-Net developed by [11]. This was done by using region-
based training and the addition of further training data provided to [21] by their own
organisation [34].

Region based training involves using Dice loss directly to complete optimisation
of the three overlapping brain tumour regions, namely the whole tumour, tumour core
and enhancing tumour [21]. This method was able to improve the model segmentation
Dice scores of both the tumour core and enhancing tumour regions [21].

The implementation by [21] used a batch size of 2 [34], large patch input images
of 128 x 128 x 128 [10] and replaced traditional ReLU activation functions with leaky
ReLU functions [21].

This U-Net implementation addressed the challenge of false positives produces in
brain tumour segmentation during enhancing tumour detection by using a combination
of post-processing, cross-entropy loss and Dice loss [21]. Furthermore, the challenge
of memory usage was addressed by modefying the model architecture [21]. A reduc-
tion in the number of filters before upsampling together with the addition of in-place
operations produced a network that had a maximum resolution of 30 feature channels
[21].

2.3.10 Asymmetrical U-Net

The first place on the BraTS 2018 challenge was achieved by [34] who utilised a U-Net
which had the following Dice score results on the testing dataset: Dice scores of 0.8839
for whole tumour, 0.8154 for tumour core and 0.7664 for enhancing tumour [34]. The
asymmetrical U-Net used a large encoder for the extraction of image features and a
smaller decoder for the reconstruction of labels [67]. An MRI volume patch size of
160 x 192 x 128 voxels was used for network input [10] and a variational autoencoder
(VAE) was added to the model for regularisation [67]. In order to accommodate the
large MRI volume patch size, [34] used a batch size of one due to GPU memory limits
on an NVIDIA Tesla V100 32 GB GPU [34]. As described by [34], the network was
implemented in Tensorflow [1].

2.3.11 Deep Learning Radiomics Algorithm for Gliomas (DRAG) Model

A novel CNN-based approach by [2] which achieved Dice score values of 0.8474,
0.7687, 0.6677 for whole tumour, core tumour, and enhancing tumour regions respec-
tively [2]. This model implemented a three-dimentional patch based U-Net model for
the Brain tumour Segmentation (BraTS) 2018 challenge [2]. While focusing on overall
survival (OS) of patients prediction, this model also addressed the challenge of data
pixel imbalance between tumour and normal brain tissue images which is especially
prominent in intra-tumour segmentation [2]. This was done by training the network
on fixed size 3D image patches [2]. No data augmentation was performed for this ap-
proach [2]. Example images of sample segmentation results of this approach are given
in Figure 10 [2].
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Figure 10: Segmentation results by [2] showing five rows of cases per the four BraTS
2018 Challenge data set MRI image modalities: FLAIR, T1, T2, T1ce, alongside the
ground truth (GT) and result segmentation Output [2]. Segmentation labels are given
as: yellow-edema, blue-enhancing tumour and red-tumour core [2].
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2.3.12 WNet

Developed by [60], the WNet is one of three cascaded networks which has been trained
for a multi-class segmentation of tumour sub-regions by [61]. This model was used as
the base model for the Autofocus Net of [55] which had the following Dice score re-
sults on the BraTS 2018 Challenge test data set: 66.88, 55.16, 64.13 for whole tumour,
core tumour and enhancing tumour respectively [55]. The two-dimensional (2D) WNet
was adopted to develop the 3D WNet [55]. This approach was based on the develop-
ment of the 3D U-Net, which was an adaptation of the two-dimensional (2D) U-Net
[55]. The Autofocus Net performs multi-class segmentation of tumours on 3D MRI im-
age and has shown that the model performance is improved as the number of parallel
convolutions in the autofocus layers increase [55].

2.3.13 Summary

In summary, most of the state-of-the art models discussed above use an adaption of
the U-Net architecture in their neural network implementation, which include the fol-
lowing: two-stage cascaded U-Net implementation developed by [24], the combination
of Deep Convolution Neural Network (DCNN) techniques to three-dimensional brain
tumour segmentation [67], the DeepSCAN models presented by [32] and [31], the
modified U-Net implemented by [21], the Asymmetrical U-Net [34], and the novel
CNN-based approach by [2]. The following challenge were addressed by the respec-
tive model implementations: model segmentation speed are addressed by [17]; input
data and intra-tumoural variability are addressed by [42], [32], [67], [32], [2] and [67];
reduce computational load are addressed by [26]; model over-fitting are addressed by
[24] and [68]; and memory limitations are addressed by [34] and [21]. While the fol-
lowing neural network models have the limitations of computational load in [42] and
[17]; memory consumption in [24] and [31] and false predictions on small anatomical
regions in the network by [67]. A summary of the top performing CNN implementa-
tions for the BraTS 2019, BraTS 2018 and the BraTS 2013 challenge test data sets are
given in Table 1.

2.4 Research Questions
The review of the literature has identified several research questions.

The following questions have been identified:

• What is the segmentation performance, measured as Dice scores per each indi-
vidual tumour region (the multi-class case), of a 2D U-Net CNN implementation
on LGG and HGG data of the BraTS 2018 data set?

• How do the Dice scores per each individual tumour region (the multi-class case),
of a 2D U-Net CNN [46] based architecture implementation compare to this 2D
U-Net CNN implementation on LGG and HGG data of the BraTS 2018 data set?

• How do the Dice scores per each individual tumour region (the multi-class case),
of a 2D U-Net CNN [46] based architecture implementation compare to a 3D
U-Net CNN [46] based architecture implementation given the addition of volu-
metric data, in the form of two stacked slices being available in 3D U-Net CNN
for training/learning?
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Table 1: A summary of the top performing CNN implementations for the BraTS 2019,
BraTS 2018 and the BraTS 2013 Challenge test data sets.

3 Implementation Methodology

3.1 Overview
In order to answer the research questions, an initial implementation of a 2D U-Net
was developed as part of the initial pipeline which was completed as a group. This
was followed by the development and implementation of my individual work. As part
of my individual work I modified the code of the initial pipeline to implement a 2D
U-Net that is based on the U-Net model by [46]. The [46] network architecture is
illustrated in Figure 8. This code and 2D U-Net [46] based model was then modified
and developed into a 3D U-Net neural network. The details of the initial pipeline
implementation together with each individual’s work is given in Figure 11. In this way
while the three implemented networks have a different architecture, all three follow the
same pre-processing steps with the exception of the 3D U-Net [46] based model which
used a different image cropping size as described in Section 3.4.

3.2 Resources
Similar to the approach used in the methodology by [34], the code development was
done in Python using the Tensorflow [57] library for the neural network implemen-
tations. The Tensorflow version 2.2 was required due to the specific use of one-hot
encoding. This required a compatible version [57] of CUDA 10.1 [41]. A python vir-
tual environment needs to be set up in which to run the code. The virtual environment
was set up so that all the project specific libraries and inter dependent versions soft-
ware are kept together in one place so as not to interfere with other programs on the
computer. Other software libraries include seaborn [63], matplotlib [20], sklearn [50],
numpy [39], SimpleITK [51], tqdm [58], and os.py libraries.
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3.2.1 Lab GPU

A resource required for this project was the Computer Science Lab GPU as I needed
to run machine learning algorithms which are based on the work of [46], on a GPU.
The Lab GPU client which I was assigned had the following properties, which were
provided as output during program run-time.

Found device 0 with properties:
pciBusID: 0000:01:00.0 name: GeForce GTX 1060 6GB computeCapability: 6.1
coreClock: 1.7085GHz coreCount: 10 deviceMemorySize: 5.94GiB
deviceMemoryBandwidth: 178.99GiB/s
This means that this machine is a GeForce GTX 1060 6GB model which has 6

Gigabytes of video ram (VRAM) required for running the deep neural network algo-
rithms.

The CPU of this computer has four cores each having the following details:
GenuineIntel Intel(R) Core(TM) i5-6500 CPU 3.20GHz model
cpu MHz : 800.000
The RAM is given as having size: 32GiB

3.2.2 Lab GPU Limitations

Two GPU related error were encountered during model training and data processing.
These will be referred to as the Core Dumped error and an Out of Memory error. The
Core Dumped error occurred when an attempt was made to train on more than five
epoch of any of the three implemented algorithms on the high grade glioma (HGG)
[55] data from the BraTS 2018 data set. This error is characterised by the following
example stack trace:

Epoch 6/10
794/794 [==============================] - ETA: 0s
Segmentation fault (core dumped)
According to [53] this error indicates that some Linux program has crashed, which

would be the Python interpreter in this case. This may be a Tensorflow library spe-
cific bug, but the error was not investigated further as a work around was found and
implemented (as described in Section 4). The Out of Memory (OOM) error would be
encountered during, for example, the evaluation of the [46] based 3D U-Net model.
This error is characterised by the following example stack trace:

tensorflow/core/framework/op kernel.cc:1753] OP REQUIRES failed at
concat op.cc:161 :
Resource exhausted:
OOM when allocating tensor with shape[2538,2,192,192,4] and type float on
/job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU 0 bfc
According to [14] and [54] this is an error thrown when the GPU is not able to

allocate the required amount of video memory in order to complete a task.

3.3 Group 2D U-Net Implementation
Similar to the approach by [55] described in Section 2.3.12. The initial pipeline im-
plementation is an adaptation of the Git repository of [48]. The BraTS 2018 LGG and
HGG data was processed separately. The program reads in the files from each folder
MRI separating the modalities and ground truth data. These are saved as individual
files. The LGG and HGG is split into training/validation/test data sets, each having
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50 : 17 : 8 and 141 : 48 : 21 patient cases respectively. The test set is pre-
processed separately at evaluation per the steps described in Figure 11, while training
and validation sets are then normalised by subtracting the mean and dividing by the
standard deviation for each MRI image. These images are then transposed to comply
with Tensorflow required tensor shape. The MRI images are 3D volumes consisting
of 155 slices with width and depth of 240 [48]. As the tumour region is not present
in all 155 slices, the images are cropped to only use the image mid portion, taking the
portion of 90 slices, from slice 30 to slice 120 [48]. This reshapes the images from
a size of 155 x 240 x 240 to 90 x 192 x 192. One-hot encoding, is used for ground
truth image target class encoding [48] assigning a value of zero to background and
a label of 3 to the enhancing tumour target class. The group deep learning model, a
2D U-Net implementation, uses a ReLu activation function, the Adam optimiser for
model optimisation, BatchNormalization for model optimisation [8], a Dropout of 20
percent to prevent model overfitting [27] and MaxPooling2D for downsampling [27].
The model hyper-parameters include stride size of 2 in Conv2DTranspose for inverse
convolutions [9]. Pooling is set to SAME in order to keep the padding of the input and
output of the same length in Conv2D [27]. The model specific Dice coefficient and
Dice coefficient loss functions used for model compilation were taken directly from
[48]. Additional code was taken from [65] for the evaluation of tumour target class
label classification and the confusion matrix implementation code was referenced from
[56] and [37]. As stated in Section 1.3, the Dice score is identical to the F score [17],
therefore the f1 score function from [49] was used in model performance evaluation
per tumour target class.

3.4 Individual Work
I investigated the U-Net segmentation performance further by modifying the group 2D
U-Net implementation architecture to that of the original 2D U-Net by [46] which also
used BatchNormalization but no Dropout. I then further modifying this architecture
to implement a [46] based 3D U-Net. I was required to keep the pre-processing un-
altered within all three models in order to accommodate their comparison. The aim
for the 3D model was to investigate the effect on model performance due to the ad-
ditional volumetric information. Due to the Out of Memory error, this needed to be
constrained to two slices. This model also used BatchNormalization, but no Dropout.
This implementation was done by replacing the 2D convolutional operations with 3D
convolutional operations (Conv2D, MaxPooling2D, Conv2DTranspose replaced with
Conv3D, MaxPooling3D, Conv3DTranspose), adjusting the model architecture in or-
der to accommodate the 2 x 192 x 192 size image, together with the addition of six
UpSampling3D operations, four of size (2, 1, 1), one of size (4, 1, 1) and (8, 1, 1)
parameters; used for adjusting tensor size in order to produce correct size tensors of
corresponding size (this was deduced from [9] which discussed UpSampling2D) for
concatenation within the model. This led to the need to use an additional final Max-
Pooling3D downsampling operation of pool size (8, 1, 1) to produce the output image.
In this way I developed the 3D U-Net implementation based on the U-Net architec-
ture of [46] which uses most of the same pre-processing steps as the other two U-Net
models.
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4 Results
As stated in Section 1.3, the BRATS data set consists of low grade glioma (LGG) and
high grade glioma (HGG) data [55]. The results were obtained by training each model
on each of these respective Glioma types separately. Similarly to the method presented
in [2], each model was trained for up to 50 epochs with the exception of the [46] based
3D U-Net implementation on HGG data. This was due to the fact that an average
of approximately 17 hours per 5 epochs were required to train the model on the lab
machine, as seen from Table 4. All predictions on all models were completed with the
assistance of the batch implementation taking a batch size of one as an Out of Memory
error (as discussed in Section 3.2.2) occurs when evaluating the performance of the
[46] based 3D U-Net implementation. In order to save time due to time constraints and
for consistency due to the Core Dumped Error (described in Section 3.2.2), the training
was done such that each model was trained for 5 epochs, then saved, then the evaluation
of the model was done on the validation set, and then this same model would be trained
for another five epochs, saved and evaluated. These steps were completed continuously
until a full 50 epochs of training was reached and all models were saved. This number
consists of 10 models for each of the separately designed and implemented 2D U-Net
architectures. Thus creating a total of separate sets of 40 2D U-Net models trained
on LGG and HGG data respectively, 10 trained 3D U-Net models for LGG and three
trained models for the 3D U-Net implementation trained on HGG data. The multi-class
case was examined in which separate Dice scores are calculated per tumour region as
was done in [55]. The results below gives the full details of performance results of each
model on the LGG and HGG validation data respectively.

4.1 LGG Data
The results on the LGG validation data of the BraTS 2018 data set of the 2D Group
U-Net together with the 2D [46] based U-Net and the [46] based 3D U-Net implemen-
tations are given in Table 2. Results show 3D [46] based U-Net having longest training
time.
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Table 2: The performance results of all implemented models (2D Group U-Net, 2D
U-Net [46] based and 3D U-Net [46] based implementations) up to 50 epochs on LGG
validation data.
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4.2 HGG Data
The results of the of the 2D Group U-Net implementation and the [46] based 2D U-
Net implementation, evaluated on the HGG validation data of the BraTS 2018 data
set, are given in Table 3. Similarly, the results on the HGG validation data of the
BraTS 2018 data set of the [46] based 3D U-Net implementation are given in Table 4.
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Table 3: The performance results of the 2D Group U-Net and the [46] based 2D U-Net
implementation models up to 50 epochs on HGG validation data.
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Table 4: The performance results of the [46] based 3D U-Net implementation model
up to 15 epochs on HGG validation data.
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5 Evaluation
The group implemented 2D U-Net is not overfitting the training data, with similar
results (Dice score within 0.08) on test and validation data for LGG and HGG data (see
Table 5, 6 and 7), except for the difference of 0.2419 on the whole tumour for HGG.
Similarly for the 3D and 2D U-Net [46] based model (see Table 8, 9, 10, 11, 12, 13
and 14), having difference of 0.186 and 0.2166 respectively on the whole tumour for
HGG. Table 16 and Figure 16 shows the performance results of all three implemented
models evaluated on the BraTS 2018 test set as described in Section 1.3. The 3D
U-Net [46] based model seems to have produced the best results. An illustration is
provided in Figure 16. Table 15 shows that results of the three implemented models are
comparable to state-of-the-art results. The confusion matrix results in Figure 12, show
that the 2D U-Net models are not able to detect the enhancing tumour for LGG data,
yet the diagonal shows that most classes are correctly classified. This is accompanied
by Figure 13, where the sample segmentation images illustrate the segmentation on
one patient to visualise how segmentation is performed across the data set which is
represented as Dice scores. Similarly for the HGG data the confusion matrix in Figure
14 is accompanied by Figure 15. Figure 14 shows that all three models are able to
classify all of the target tumour classes correctly.

Additionally from the program output during run-time, it was shown that the 3D
U-Net [46] based model had 105,271,812 trainable hyper-parameters, while the 2D U-
Net [46] based model had 36,954,116 trainable hyper-parameters and the Group 2D U-
Net implementation had 31,348,868 trainable hyper-parameters. Based on the results
suggested by [72] in Section 2.3.5, where models with a larger number of trainable
hyper-parameters had better performance; I expected the Dice scores of the [46] based
3D U-Net model to perform better than the other two models on all three of the target
classes on HGG data. This was not the case as shown in Table 16. However the [46]
based 3D U-Net model used for the evaluation had only been trained on 10 epochs
and further training of this neural network on more epochs may give better results.

5.1 Group 2D U-Net Implementation
5.1.1 LGG data set

Table 5: Group 2D U-Net (this work) implementation performance on the BraTS 2018
test data set after 20 epochs of training on LGG data.
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Figure 13: Sample segmentation images of the final results of this work for LGG data.
The images are displayed per model and shown per column from top to bottom: the
Group 2D U-Net implementation, 2D U-Net implementation based on [46] and 3D U-
Net implementation based on [46]. The sample images from left to right: Brain image,
Ground Truth and segmentation Output. Segmentation labels are displayed per colour,
with green: edema, blue: enhancing tumour and yellow: tumour core.

5.1.2 HGG data set

Table 6: Group 2D U-Net (this work) implementation performance on the BraTS 2018
test dataset after 50 epochs of training on HGG data.
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Figure 15: Sample segmentation images of the final results of this work for HGG data.
The images are displayed per model and shown per column from top to bottom: the
Group 2D U-Net implementation, 2D U-Net implementation based on [46] and 3D U-
Net implementation based on [46]. The sample images from left to right: Brain image,
Ground Truth and segmentation Output. Segmentation labels are displayed per colour,
with green: edema, blue: enhancing tumour and yellow: tumour core.

Table 7: Group 2D U-Net (this work) implementation performance on the training data
set after 50 epochs of training on HGG data.
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5.2 Individual 2D U-Net Implementation
5.2.1 LGG data set

Table 8: 2D U-Net model implementation (this work) based on [46] with performance
dice scores per data set after 20 epochs of training on LGG data.

5.2.2 HGG data set

Table 9: 2D U-Net based on [46] implementation performance dice scores per dataset
after 20 epochs of training on HGG data.

Table 10: 2D U-Net based on [46] implementation performance dice scores on training
data set after 20 epochs of training on HGG data.
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5.3 Individual 3D U-Net Implementation
5.3.1 LGG data set

Table 11: 3D U-Net based on [46] implementation performance dice scores per data
set after 30 epochs of training on LGG data.

Table 12: 3D U-Net based on [46] implementation performance dice scores per training
data set; subsets of 25 patients and the average after 30 epochs of training on LGG data.

5.3.2 HGG data set

Table 13: Performance dice scores of the 3D U-Net implementation (this work) based
on [46] after 10 epochs of training on HGG data.
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Table 14: 3D U-Net based on [46] implementation performance dice scores per training
data set; subsets of 2538 slices and their average after 10 epochs of training on HGG
data.
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5.4 Comparison to State-of-the-art

Table 15: Performance results comparison to state-of-the-art of the best performing
models produced from the Group 2D U-Net; 2D U-Net implementation based on [46]
and 3D U-Net implementations based on [46] per LGG and HGG data of the BraTS
2018 test data set respectively.
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5.5 Summary of Final Results
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Table 16: Summary of the final results of this work. Table showing the performance
results of the best performing models produced from the Group 2D U-Net implemen-
tation alongside the 2D U-Net implementation based on [46] and the 3D U-Net im-
plementations based on [46] per LGG and HGG data of the BraTS 2018 test data set
respectively.

6 Conclusion

6.1 Main Results
In conclusion the main results of this project are the development of three deep neural
network implementations for the segmentation of brain tumour MRI images. These
are the group implemented 2D U-Net adaptation of [48], and my individual CNN im-
plementations, namely the 2D U-Net implementation based on the work of [46] and
the consequent [46] based 3D U-Net implementation. The performance of each of the
algorithms measured as Dice scores per each individual tumour region (the multi-class
case) [55] are provided in Table 16. As seen from Table 15 the result Dice scores
achieved by these models are comparable to state-of-the-art techniques. Furthermore,
the [46] based 3D U-Net implementation seems to have had the best overall perfor-
mance for both the 210 high grade glioma (HGG) [55] and 75 low grade glioma (LGG)
[55] data when evaluated on the BraTS 2018 Challenge test set as described in Sec-
tion 1.3. In terms of the clinical context this means that using CNNs for brain tumour
segmentation may assist radiologist by performing automatic brain tumour segmenta-
tion, thereby saving time [15] and assisting to circumvent any possible human based
segmentation result variability [64].
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6.2 Objectives Achieved
The main objectives of this project have been achieved with the solutions give per
objective discussed in the Sections below.

6.2.1 Primary Objectives

• The literature review has been completed and is provided in Section 2. The
consecutive research questions have been formulated and provided in Section
2.4.

• The initial pipeline to read in and pre-process the data from the open source data
set (BraTS) [35], [3], [4], [5], [6] has been completed as part of the work done
as a group as shown in Figure 11.

• A segmentation of brain tumour images with an implementation of a segmen-
tation algorithm has been completed as part of the group initial pipeline imple-
mentation as shown in Figure 11 (a 2D U-Net adaptation of [48]).

6.2.2 Secondary Objectives

• The 2D U-Net [46] based convolutional neural network has been implemented to
perform segmentation of tumour images as an example of a re-implementation
of an existing algorithm as identified in the literature review given in in Section
2.

• The 3D U-Net [46] based convolutional neural network has been implemented
as an example of more advanced algorithm for brain tumour segmentation com-
pared to the 2D U-Net [46] based CNN implementation.

• There are two models which were implemented by me, namely the [46] based
2D U-Net implementation and [46] based 3D U-Net implementation. These were
compared to the group implementation of a 2D U-Net adaptation of [48]. The
performance and results of each of the three resulting CNN models has been pro-
vided in Figure 12 where my individual work is compared to the results achieved
by the team.

6.3 Limitations
There were several constraints related to the GPU which were encountered during
model training and data processing in the form of a Core Dumped error and an Out of
Memory error (errors are described in Section 3.2.2). A Core Dumped error occurred
when an attempt was made to train on more than five epoch of any of the three imple-
mented algorithms on the 210 high grade glioma (HGG) [55] data from the BraTS 2018
data set. A work-around needed to be implemented by training each model for 5 epochs
and then saving it and repeating the process. The Out of Memory error occurred for
occurred on the lab GPU both during training and the evaluation of the performance
of this algorithm for both the 210 high grade glioma (HGG) [55] and 75 low grade
glioma (LGG) [55] patient cases. This was especially a problem for the 3D U-Net [46]
based model implementation. While the 2D U-Net models used a batch size of one
for evaluation on the HGG validation data and split the LGG training training data for
performance evaluation, the [46] based 3D U-Net implementation needed to split the
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validation data and training HGG data for evaluation together with the splitting of LGG
training training data for performance evaluation. Additionally a batch size of one was
used for the training of the [46] based 3D U-Net implementation in order to avoid the
Out of Memory error.

6.4 Future Work
6.4.1 Combine the HGG and LGG dataset for Training and Evaluation

In this work, the training and evaluation has been done on LGG and HGG data seper-
ately. However it would be interesting to investigate the performance of each model on
the data as a whole, when compared to the state-of-the-art models as given in Table 15

6.4.2 Extend the Group U-Net Model to 3D

It would be interesting to investigate the performance of the modified 3D U-Net model
which would be a modification of the group implemented 2D U-Net architecture in
order to monitor any changes in the LGG Dice score results for enhancing tumour
target class.

6.4.3 Use More Slices for Volumetric Information

The current [46] based 3D U-Net implementation uses two slices of each MRI image
for volumetric information. It may be interesting to investigate and possibly gain an
improvement in the performance of this model by increasing the number of slices.

6.4.4 Reduce Model Hyper-parameters and Model Complexity

A limitation of this 3D Model is the 105,271,812 trainable hyper-parameters which
may be the reason for the model complexity and additional training time which was
required compared to the other two models. It would be beneficial to experiment with
the application of the exploding hyper-parameters challenge solution presented in [67]
as one of the CNN technique described by [67] as discussed in Section 2.3.7.

6.4.5 Investigating the differences between 2D U-Net and 3D U-Net

It would be interesting to further investigate how the dice scores of the [46] based
2D U-Net implementation and [46] based 3D U-Net implementation described above
mirror each other in performance. That is at what points in number of training epochs
does performance, as measured by the dice scores per each individual tumour region
(the multi-class case) [55], start to improve and/or deteriorate as changes are made in
corresponding number of epochs in both of these neural networks.
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