

University of St Andrews

School of Computer Science

Timespan - Museum Without Walls Mobile Application

Mujtaba Mehdi

120022147

MSc in Advanced Computer Science

23 August 2013

Declaration

“I hereby certify that this dissertation, which is approximately 12957 words in length, has been com-

posed by me, that it is the record of work carried out by me and that it has not been submitted in any

previous application for a higher degree. This project was conducted by me at The University of St An-

drews from June 2013 to August 2013 towards fulfilment of the requirements of the University of St

Andrews for the degree of MSc under the supervision of Dr. Alan Miller and Dr.Lisa Dow.”

"In submitting this project report to the University of St Andrews, I give permission for it to be made

available for use in accordance with the regulations of the University Library. I also give permission for

the title and abstract to be published and for copies of the report to be made and supplied at cost to any

bona fide library or research worker, and to be made available on the World Wide Web. I retain the cop-

yright in this work."

Signature Date

Mujtaba Mehdi 23/08/2013

Dedicated to my parents,

Ghulam Mehdi and Hamida Bano.

Acknowledgements

I would like to offer special thanks to Dr.Alan Miller who accepted the responsibility to supervise this

project and offered valuable suggestions which guided this project to a successful completion. I would

like to thank my second supervisor Dr. Lisa Dow for her guidance and help throughout the project.

I would also like to thank Timespan staff (Anna Vermehren and Jacquie Aitken) who provided me with

the opportunity to work on this project. They were very helpful and offered a great support throughout

the project. They provided the data and feedback without which this project would not have successful-

ly reached its current state.

I would like to thank my family specially my parents (Ghulam Mehdi and Hamida Bano) and my broth-

er Ather Mehdi who were always there to help me in every possible way. Last but not least I would like

to thank the University for accepting me for MSc and my friends at St Andrews who made this year

memorable.

Abstract

“Museum Without Walls” is a mobile application aimed at delivering an interactive user experience for

a Museum - beyond the traditional instruments of presenting objects of interest using the latest mobile

technology. The project is commissioned by Timespan, a creative heritage and arts development hub

based in Helmsdale, Scotland. The primary aim of this project is to define the various parameters within

the environment which a user interacts using a mobile phone - and then utilise the available options to

make this a highly accessible and user friendly application. This project not only makes the whole sub-

ject of visiting museums more interesting, but also maximises the possibilities of better educating their

visitors. The management of the Museum see this project as a great tool to attract new audiences whilst

keep the existing ones highly engaged by using mobile technology.

The year 2013 is also highly significant in the history of Scotland as it marks the 200th anniversary of

the tragic Highland Clearances that occurred in 1813. The several hundred tenants of the Strath of Kil-

donan were forced to abandon their homes and were dispatched to North America; making way for

sheep farming which was a booming trade at the time. The painful ordeal suffered by the tenants is still

considered one of the most demanding journeys faced by European emigrants to North America.

Very recently Timespan came out with their iOS application which delivers a virtual tour of the High-

land Clearances and provides a highly educational experience to the visitors who would like to learn

about the history of the Strath of Kildonan. The project discussed in this report is a continuation of the

same application. However it aims to extend the reach of the application from Apple iOS platform to

other mobile platforms. The major highlights of this App include: The Kildonan Trail, a GPS triggered

geo-referenced historical map and a user interactive book called The Clearances Story. The application

has not only been fully conceived, but the Android version of it has already been ported successfully.

Table of Contents

List of Figures ... 9

List of Tables ... 11

Chapter 1 | Introduction .. 1

1.1 Background .. 1

1.2 Scope and Objectives ... 1

1.3 Achievements ... 2

1.4 Overview of Dissertation .. 2

Chapter 2 | Context Survey ... 3

2.1 Related Work .. 3

 The Louvre Museum, Paris ... 3

 National Portrait Gallery, London ... 4

 Vusiem for British Museum .. 5

2.2 Evaluation of development methodologies .. 6

 Architecture Styles .. 6

 Cross Platform Methodologies .. 7

2.3 Market Share Analysis .. 8

2.4 Issues in Android .. 11

 Compatibility ... 11

 Security and Privacy.. 12

 Power Utilization... 12

2.5 Conclusion .. 12

Chapter 3 | Evaluation of the iOS App .. 13

3.1 Conclusion .. 16

Chapter 4 | Software Requirement Specifications .. 17

4.1 Functional Requirements .. 17

 Primary .. 17

 Secondary .. 17

 Tertiary .. 17

4.2 Non Functional Requirements .. 18

Conclusion ... 18

Chapter 5 | Software Development Methodology ... 19

5.1 Agile Development ... 19

 Design ... 20

 Development ... 20

 Deployment and Release to Market .. 20

5.2 Source Code Management .. 20

5.3 Conclusion .. 20

Chapter 6 | Android Application Design ... 21

6.1 Model View Controller Design Pattern (MVC) ... 21

6.2 Software Architecture ... 22

6.3 User Interface Design ... 23

 Views and ViewGroups ... 23

6.4 User Interface Widgets ... 25

 TextView ... 26

 ImageView .. 27

 ImageButton .. 27

 ListView .. 27

 MapView ... 29

6.5 Supporting Multiple Screen Sizes .. 30

6.6 Conclusion .. 31

Chapter 7 | Android Software Development ... 32

7.1 Development Tools and Libraries... 32

 JDK ... 32

 Android SDK .. 32

 Eclipse ADT .. 32

 Android NDK .. 32

7.2 The Android Software Stack .. 33

7.3 Project Hierarchy .. 34

7.4 Class Diagram .. 35

7.5 Offline Maps ... 38

 Extracting the iOS IPA File: .. 38

 Loading MBTiles in MapView .. 38

 Displaying the Map Pins and Map Detail View .. 40

7.6 PDF Reader .. 41

7.7 Conclusion .. 41

Chapter 8 | Publishing ... 42

8.1 Setting up Google Play Account... 42

8.2 Expansion Files .. 44

 Expansion Files Basics .. 44

 Expansion Files Implementation ... 46

8.3 Conclusion .. 52

Chapter 9 | Conclusion .. 53

9.1 Future Work .. 54

 Support for Tablets .. 54

 Application Updates .. 54

 Merchandise Shop ... 54

 Integrate Unity 3D ... 54

References ... 55

Appendix A – External Libraries ... 58

Appendix B - Compiling the Source Code .. 59

Appendix C – Client Feedback ... 60

List of Figures

Figure 1 - The Louvre Museum, Paris iOS App .. 3

Figure 2 - National Portrait Gallery iOS App .. 4

Figure 3 - Vusiem for British Museum iOS& Android App .. 5

Figure 4 - Standalone and Server-client architecture .. 6

Figure 5- Nokia, Samsung, iPhone and BlackBerry Smartphones .. 8

Figure 6 - IDC 2012 Smartphone OS Market Share[26] ... 9

Figure 7 - ComScore 2012 Smartphone Vendor Market Share[27] .. 9

Figure 8 - IDC 2012 Tablet OS Market Share[28] .. 10

Figure 9 - Android OS Distribution ..11

Figure 10–Mobile Usability Factors .. 13

Figure 11 - Timespan iOS App Home Screen ... 14

Figure 12 - Timespan iOS App Clearances Story - Chapters List Screen ... 14

Figure 13 - Timespan iOS App Clearances Story .. 15

Figure 14 -Timespan iOS App The Longhouse ... 15

Figure 15 - Timespan iOS App Kildonan Trail ... 16

Figure 16 - Agile Development Phases ... 19

Figure 17 - lifecycle of a file in Git SCM ... 20

Figure 18 - Android MVC ... 21

Figure 19 - Layered Architecture of Timespan App .. 22

Figure 20 - Initialization of an Android Layout User Interface ... 23

Figure 21 - Android Layout Hierarchy .. 24

Figure 22 - Android Graphical UI (Left) and XML Layout (Right) .. 24

Figure 23 - Main Screen Widgets .. 25

Figure 24 - Defining a TextView Widget .. 26

Figure 25 - Clearances Story Screen Widgets ... 26

Figure 26 - Defining an ImageView Widget ... 27

Figure 27 - Defining an ImageButton Widget ... 27

Figure 28 - Defining a ListView Widget ... 28

Figure 29- Kildonan Trail NearBy Screen Widgets ... 28

Figure 30 - Defining a MapView Widget .. 29

Figure 31 - Kildonan Trail Screen Widgets ... 29

Figure 32 - Android Screen Sizes .. 30

Figure 33 - Ratio between different screen sizes .. 30

Figure 34 - Android Files Hierarchy for Different Screen Sizes ... 31

Figure 35 - Android Software Stack[39] ... 33

Figure 36 - Android Project Hierarchy .. 34

Figure 37 - Class Diagram ... 35

Figure 38 – MapMainActivity, MapDetailActivity and MapNearbyActivity ... 36

Figure 39 - OralHistoryMainActivity and OralHistoryDetailActivity .. 37

Figure 40 - ClearancesActivity .. 37

Figure 41 - iOS IPA Structure[42] ... 38

Figure 42 - MBTiles format visualisation ... 39

Figure 43 - Initializing and Loading MBTiles in MapView widget .. 39

Figure 44 - Map Pins(Left) and Map Detail View (Right) .. 40

Figure 45- MuPDF Reader ... 41

Figure 46 - Google Play Store Registration Payment.. 42

Figure 47 - Google Play Store Registration Account Details .. 43

Figure 48 - Google Play Store Developer Console ... 43

Figure 49 - Adding Expansion Files .. 44

Figure 50 - Expansion files implementation ... 46

Figure 51 - Installing Google Play Licensing and APK Expansion Library ... 47

Figure 52 – Android Manifest Permissions for Downloader Library .. 48

Figure 53 - Android Manifest Permissions for Downloader Service .. 48

Figure 54 - Alarm Receiver Initialisation .. 49

Figure 55 - Android Manifest Permissions for Alarm Receiver .. 49

Figure 56 – Initialization of IDownloaderService interface. ... 50

Figure 57 - Reading the Expansion Files .. 51

Figure 58 - Reading the Expansion Files from Zip ... 51

List of Tables

Table 1 - Mobile Development Approaches .. 7

Table 2 - Android OS Distribution ...11

Table 3- Features Comparison between Timespan iOS and Android applicaiton 53

1 | P a g e

Chapter 1 | Introduction

It has become an undeniable fact that mobile technology has become an imperative need for all cultural

and social organisations to utilise the new opportunities available today. Today a vast number of mobile

applications are serving millions of customers and benefiting businesses every minute as we speak. The

growth of mobile technology in the recent years has been quite dramatic and exciting, whilst opening up

doors for the technology experts and businesses to present themselves in front of their audiences on a

truly global scale. It does not matter how big or small an organisation may be, but the opportunities are

equally available for the creative and entrepreneurial minds to capitalise on. In this case, the project

aims to stretch the scope of business and education that a Museum has to offer beyond its physical

walls.

This report presents a case of an interesting application development process for Timespan and discuss-

es the technical and logical challenges involved along the way. This project has been an offshoot and

extension of the initial iOS application which is available to download from Apple App Store. The pro-

ject has been already delivered to Timespan in association with the University of St Andrews.

1.1 Background

The purpose of this App is to create a virtual tour of The Highland Clearances and to create an interac-

tive trip for the actual visitor in the Highlands area of Strath of Kildonan, a northernmost part of

Scotland[1]. Timespan is launching this application because the year 2013 marks the Bicentenary of

Highland Clearances. The current iOS application developed by Bluemungus[2] is available at the App

Store. Timespan wants to port this application to other mobile platforms to extend their use base.

1.2 Scope and Objectives

One of the core requirements in the existing Timespan iOS application is that some features require the

user to be physically present in the Strath of Kildonan. Due to the fact that there is no mobile reception

in that area, this project aims to develop a mobile application which should work offline without any

internet or mobile access. All of the data needs to be present on the device at the time of installation.

The application database consists of audio and visual information such as pictures and videos. There are

also historical maps to give the visitor information about different events at different locations

Following are features or different screens present in the iOS application:

 Clearances Story Book

 Kildonan Trail Offline Map

 Oral Histories Audio Podcasts

 Longhouse and About static screens

http://www.cs.stir.ac.uk/~kjt/research/conformed.html

Chapter 1 | Introduction

2 | P a g e

Following are the main objectives of this project:

 To perform the evaluation of iOS Application

 To determine cross platform mobile development methodologies

 To perform the market analysis for different platforms

 To generate the application content

 To support multiple device screens

 To develop and publish the application for other mobile platforms.

1.3 Achievements

An Android application has been successfully developed to be published on the Android Market Google

Play Store. It meets all the requirements specified by this project. The client has tested and given the

final feedback about the application which can be found in Appendix C. The project accomplishes the

following objectives:

 Generated all the content for the application.

 Implemented landscape and portrait mobile screen support.

 Completed the Clearances Story, Kildonan Trail, Oral Histories, Longhouse and About

screens.

 The user can perform multiple operations, for example playing audio and navigating the app.

 The application is ready to be published on the Google Play Store.

1.4 Overview of Dissertation

There are total nine chapters in this report. The first chapter is the Introduction which gives an over-

view, background and achievements of this project. The second chapter Context Survey discusses

related work review, evaluates different mobile development methods, presents market share analysis of

smartphones and at the end, points out few Android platform specific issues. The third chapter Evalua-

tion of the iOS App evaluates the existing iOS application. Based on the results from second and third

chapters, the fourth chapter Software Requirement Specifications lists down the application require-

ments. Chapter five Software Development Methodology discusses the design and development process

adapted for this project. Chapter six Android Application Design and chapter seven Android Software

Development describes the user interface design, software design and software implementation of this

project. Chapter eight Publishing explains how to publish the application on Google Play Store. Finally

chapter nine Conclusion wraps up this project and gives an overview of future work.

3 | P a g e

Chapter 2 | Context Survey

This chapter discusses the literature review of this project. In the first part of this chapter, a review is

presented about related mobile apps developed by museums around the world. These apps are available

on iOS and Android markets. In the second part of this chapter, a market share analysis is presented to

determine the market statistics on different mobile platforms. This project uses public data to present

the market analysis. The mobile platform with the highest market share is considered for the develop-

ment of the mobile application, which is Android for this project.

The third part of this chapter discusses issues and resource optimization for the Android platform. The

following issues will be considered; security, performance, usability and battery utilization.

2.1 Related Work

There are several museum applications available on the Android, Apple and other smartphone markets.

Following are the reviews of three applications selected from the Apple and Android market stores.

 The Louvre Museum, Paris

Figure 1 - The Louvre Museum, Paris iOS App1

The Musée du Louvre iPhone application offers a fairly concise view of the Museum. The virtual tour

includes some handy information about the 12th century palace in the form of pictures, video and text.

They have utilised some of the popular features of the iOS for example the artwork is presented in iPh-

one Cover Flow format. The app offers viewing options to see all the paintings as you flip through the

collection and individual items can be tapped on to see enlarged views and read more details. The app

1
 Image Credit and iOS App Available at: https://itunes.apple.com/gb/app/musee-du-louvre/id337339103

https://itunes.apple.com/gb/app/musee-du-louvre/id337339103

Chapter 2 | Context Survey

4 | P a g e

supports iPhone's pinch gestures to zoom-in to closely look at parts of the museum paintings. Under a

location button, it also lets you see the exact location of where the painting resides in the Museum. You

can find some detailed and high definition videos about some of the most significant pieces. The videos

are narrated in a choice of French, English, German and Japanese languages. It also lets you discover

the various parts of the Louvre in a Cover Flow format and some detailed information can be seen un-

der the images. Overall the application is pretty simple and straight forward with a conventional set of

features.

 National Portrait Gallery, London

Figure 2 - National Portrait Gallery iOS App2

The National Portrait Gallery iOS application is very rich in content as it showcases comprehensive

galleries and audio commentaries from the curators who dive in to the background and history of every

art piece. It also lets you see the several themed sequences of the collections by selecting from Kings,

Queens, Science and Discovery to Fame, Celebrity, and Writers. Similar to the Louvre app it also shows

you the exact physical location of every art piece in the Museum. The total number of portraits are said

to be over 10,000 art pieces. Other features include useful information about opening hours and the

shops and facilities around the area.

However, a slight weakness we found in this app is the audio commentaries can be annoying for some

as the content is only available in audio format. If a visitor is not carrying their headphones then they

are left with two options - either to avoid the app altogether or turn on their speakers loud and disturb

2
Image Credit and iOS App Available at: https://itunes.apple.com/gb/app/national-portrait-gallery/id411447181

https://itunes.apple.com/gb/app/national-portrait-gallery/id411447181

Chapter 2 | Context Survey

5 | P a g e

other visitors around them. Another weakness is the sheer size of the app which can take quite a while

to download.

 Vusiem for British Museum

Figure 3 - Vusiem for British Museum iOS& Android App3

The Vusiem is a mobile app for the British Museum which showcases more than 800 important objects

that can be seen across the museums in London. It offers a virtual tour along with audio guides that let

you explore all the objects in detail. However it does not provide a slideshow view to see flick through

the pieces quickly, and similar to the National Portrait Gallery app; it lets you explore the gallery in

themed collections. We noticed a major chunk of information is referenced through Wikipedia but we

hope there must be some sort of editorial control over; what gets published etc. It also supports seven

different languages including English, German, French, Spanish, Russian, Portuguese and Simplified

Chinese. The usability is pretty good and it does create a spark of interest when you see a gallery full of

curious little objects responsible for shaping the world we live in. Overall it offers all the basic func-

tionalities in a conventional way.

3 Image Credit and iOS App Available at: https://itunes.apple.com/gb/app/vusiem-for-british-museum/id551275212

Android App: https://play.google.com/store/apps/details?id=air.com.bm.london.vusiem&hl=en_GB

https://itunes.apple.com/gb/app/vusiem-for-british-museum/id551275212
https://play.google.com/store/apps/details?id=air.com.bm.london.vusiem&hl=en_GB

Chapter 2 | Context Survey

6 | P a g e

2.2 Evaluation of development methodologies

The related work review provides information about the different applications in the market. To imple-

ment the mobile application, there are several development styles and methodologies available.

 Architecture Styles

The architecture defines the behaviour of the application. Following are the two basic architecture styles

in which a mobile application can be developed.

Figure 4 - Standalone and Server-client architecture

2.2..1 Standalone

Standalone or offline applications do not interact with the server after installation[3]. The left part of the

Figure 4 presents the standalone architecture. The current iOS application for Timespan follows

Standalone architecture. The application size is increased because everything needs to be downloaded

which may or may not be required by the user. The mobile client performs all of the processing and it

does not depend on server calls so the application can work without internet availability. Any update in

the application requires the user to download the complete application again.

2.2..2 Server-Client

A server-client architecture implements business logic on the server and user-interaction and infor-

mation display is performed on the client[4]. The right part of Figure 4 presents server-client

architecture. These are data driven applications which have a tiny installation size and increases on re-

quest of the user. Internet connectivity is required for web service calls[5] and updates, otherwise only

the client-side features are accessible.

Chapter 2 | Context Survey

7 | P a g e

 Cross Platform Methodologies

The architecture style is not enough to decide development architecture of a mobile application. The

next challenge is to determine the development approach. The project requirement of this application is

to create a secure[6] cross platform application which uses touchscreen, GPS and utilize audio capabili-

ties. This can be achieved by using the following approaches [3][7]:

2.2..1 Native

Native application is built only for the specific platform and uses operating system features to enhance

performance. The market place for every operating system requires a paid developer account and the

application is only distributed via the market place. These applications are very reliable and powerful.

The downside of this approach is to develop native application for each platform separately.[8].

2.2..2 Hybrid

Hybrid applications work similar to native application but developed using a common language. All of

the available hybrid platforms are proprietary and the application is distributed via respective market

place of each operating system. They can access all the hardware capabilities of a smartphone - for ex-

ample camera, audio, video and GPS sensor[9].

2.2..3 Web

A mobile application runs in the browser and does not require a market place to distribute the applica-

tion. These applications are developed using HTML, CSS and JavaScript. HTML5 can access hardware

capabilities of smartphones.[3]

Table 1compares the three development approaches with frameworks, programming language and sup-

ported mobile platforms.

Approach Framework Language Platforms Supported

Native

iOS SDK[10],

Android SDK[11],

BlackBerry SDK[12],

Microsoft Silverlight[13]

Objective-C,

Java,

C#

iOS,

Android,

BlackBerry,

Windows Phone

Hybrid
PhoneGap[14],

Titanium[3]
JavaScript

iOS,

Android,

BlackBerry

Web Web Technologies

HTML 5[15],

CSS3,

JavaScript

HTML5/CSS3/JavaScript

supported browser

Table 1 - Mobile Development Approaches

Chapter 2 | Context Survey

8 | P a g e

There are other approaches available such as Cabana[16], Mobile Mashups[17], Unity[18] and Cross-

Compiling Methods[19]. The selection for the development approach should be based on Time, Availa-

ble Resources and Features. Selecting the Web approach has certain challenges such as handling the

behaviour of mobile on different devices (including Personal Computers) [20]. Responsive designs are

used in Web approach to solve this problem[21].

Apart from determining the architecture style and cross platform methodologies, the development of an

application also highly depends on the market share of specific platforms. An application is only useful

if it works on the user’s mobile device. The next part presents a market share analysis to determine the

number of users for each mobile platform.

2.3 Market Share Analysis

Figure 5- Nokia, Samsung, iPhone and BlackBerry Smartphones4

This part performs an analysis on the market share of smartphones. Every modern smartphone runs on

an operating system with high computing capability. These smartphones feature multimedia audio, vid-

eo, camera, touchsreen, Wi-Fi and GPS sensors[22]. Examples of operating systems which runs on

these smartphones include Apple iOS[8], Google Android[23], BlackBerry OS[24] and Windows

Phone[25]. These operating systems are equipped with browsers capable of displaying standard web

pages. Application market place for each platform allows developers to build and distribute applica-

tions.

To determine the market share, public survey and research data is used for analysis. There are several

ways to do the market analysis such as different vendors, device types, device models and operating

systems.

4Image Credit: http://www.tecnologianice.com/2011/11/android-vs-iphone-vs-windows-phone.html

http://www.tecnologianice.com/2011/11/android-vs-iphone-vs-windows-phone.html

Chapter 2 | Context Survey

9 | P a g e

According to IDC (International Data Corporation) report for 2012 smartphone OS, Android has 69%

and iOS has 19% market share[26].Figure 6 shows the distribution of smartphone OS in 2012.

Figure 6 - IDC 2012 Smartphone OS Market Share[26]

According to ComScore, while Android remains the top smartphone OS, Apple stays as the top selling

smartphone vendor in the UK[27] with more than 31% market share. Figure 7 shows the UK market

share for different vendors.

Figure 7 - ComScore 2012 Smartphone Vendor Market Share[27]

The data for tablet OS shows that Apple is at the top position with more than 54% of the market share

and Android market share of 43%[28].Figure 8 shows the IDC 2012 Tablet OS market share

Chapter 2 | Context Survey

10 | P a g e

Figure 8 - IDC 2012 Tablet OS Market Share[28]

The results from the market share analysis shows that Android has the major share compared to Apple

iOS. With different vendors and versions of operating system, Android has captured a major share of

the smartphone market. Apple takes the second position in terms of the market share. This cannot be

neglected as Apple iOS only works on iPhone and iPad. This makes Apple a major competitor in the

smartphone and tablet market.

In the next part, issues are discussed related to Android platform. This platform is selected for study on

the basis of market share analysis.

Chapter 2 | Context Survey

11 | P a g e

2.4 Issues in Android

Android smartphones are shipped by several vendors such as Samsung, HTC and Motorola. According

to Google CEO, Eric Schmidt, there are 1.5 million Android devices activated each day[29]. Google has

been struggling to support each and every hardware device for its Android operating system. This cre-

ates a major compatibility issue for the developers as they have to write application to support hundreds

of different devices which increases the development and testing cost as compared to iOS.

Being an open source development platform, Android has major significant advantages over iOS. There

are practically no restrictions on developing any feature. Apple has a restricted development environ-

ment with specific guidelines for building Apps. The Android market place also has no limitations and

restrictions. Because of this openness, certain problems have been occurring for the Android users and

developers.

 Compatibility

There are several smartphone vendors with different devices supporting Android OS. Google also re-

lease frequent updates to Android OS. Due to different vendor and the OS, most of the devices fail to

update to latest OS. The latest OS is Android version 4 but majority of the devices are still on 2.3 Gin-

gerbread[30]. Table 2and Figure 9showAndroid OS distribution.

OS Version OS Name Distribution

1.6 Donut 0.10%

2.1 Eclair 1.50%

2.2 Froyo 3.20%

2.3 Gingerbread 36.60%

4.0 Ice Cream Sandwich 25.60%

4.1 / 4.2 Jelly Bean 33.00%

Table 2 - Android OS Distribution

Figure 9 - Android OS Distribution

Chapter 2 | Context Survey

12 | P a g e

 Security and Privacy

Android applications can be downloaded from the market place as well as from any private store. This

results in poor check and balance on the quality of available Apps. There have been several malware

Apps submitted in the store[31]. Although anti-virus applications are available and Google removes

these malware applications time to time. The number of malware attack on Android is much higher as

compared to iOS[31].

 Power Utilization

The hardware capabilities of smartphones have increased exponentially in the recent years. Multimedia

features and high performance gaming requires extensive power source. Unfortunately the power back-

up (battery) has not made significant advancement. According to survey, users are not satisfied with

battery utilization of Android smatphones [32]. There have been various studies on how to optimize

battery utilization[33] including certain programming techniques for the developers[34].

2.5 Conclusion

This chapter focused on reviewing related museum applications, evaluating the development approach-

es for mobile applications, performed a market analysis and pointed out the major issues in Android

platform. The next chapter evaluates the existing Timespan iOS application to gather the requirements.

13 | P a g e

Chapter 3 | Evaluation of the iOS App

This chapter focuses about evaluating a mobile apparition. There are several methods available to de-

termine the Usability of a mobile application. For this project we are using PACMAD model, which

evaluates usability on the basis of Effectiveness, Efficiency and Satisfaction[35]. The process involves

manually exploring the application; therefore the existing iOS application is evaluated for each feature

using this model. The App has been designed following iOS design guidelines[36] except few minor

problems identified.

Figure 10–Mobile Usability Factors

Following are the features in the iOS application:

The ‘Kildonan Trail’ is a journey which takes the user to ten locations along the Strath of Kildonan. The

user learns about the geographical landscape and how it has changed over time since the clearances.

Audio narrations and historical picture gallery is available for the user. The sites are visible on the trail

map. The ‘Clearances Story’ follows the Macpherson family and how they faced eviction from their

home and emigration to North America. This story is based on the letters written two hundred years ago

by the people who were forcefully evacuated. Audio and images are available for the user to browse

through the story. ‘The Longhouse’ tells the user about the Macpherson’s house and different features of

houses in the highlands. The interpretation and construction of the houses is derived from the drawings

and archaeological research techniques. The ‘Oral Histories’ contains voices of the descendants, emo-

tional poems and traditional music. ‘Fill the Kist’ is a game for youngsters which use QR Codes to

collect items in the Kist. The App can also be used for educating people about Clearances as it has now

become an integral part of Scottish Studies.

Chapter 3 | Evaluation of the iOS App

14 | P a g e

 Home

Figure 11 - Timespan iOS App Home Screen

The Home screen consists of horizontal and vertical menus as shown in Figure 11. The horizontal menu

at the bottom is the native iOS Tab-Bar controller. User can navigate to other features from this screen

using the menu buttons. The background image keeps changing with a specified interval.

 Clearances Story

This section contains a book which contains text, images and audio. There are ten chapters in the book,

each chapter containing several pages. The user can go back and forth by swiping the pages.

Figure 12 - Timespan iOS App Clearances Story - Chapters List Screen

Figure 12 shows the first screen which is the table of contents from which user can navigate to different

chapters in the book. This provides the user to easily navigate within the book.

Chapter 3 | Evaluation of the iOS App

15 | P a g e

Figure 13 - Timespan iOS App Clearances Story

After selecting a chapter, the application displays the screen as shown in left part of Figure 13 . There

are certain problems on this screen. The user cannot perform zoom actions to read the text properly. The

second problem is that when the audio is being played as shown in right part of Figure 13, user cannot

interact with the App. Sometimes the application crashes when user switches back and forth. The book

used in the iOS application is not in a reusable format; for example PDF. This makes it impossible to

reuse the content for further application development.

 The Longhouse

Figure 14 -Timespan iOS App The Longhouse

This feature contains an image of a Longhouse which shows additional information by tapping on the

labelled numbers as shown in Figure 14. This feature will not be developed as required by the client.

Chapter 3 | Evaluation of the iOS App

16 | P a g e

 Kildonan Trail

This section contains an historical map of the Strath of Kildonan which works offline without internet

connectivity. The user can tap on map pins which leads to further detail views as shown in Figure 15.

The user can also scroll and zoom on this map.

Figure 15 - Timespan iOS App Kildonan Trail

3.1 Conclusion

In this chapter we evaluated the Timespan iOS application. The following list shows the issues found

during evaluation:

 Clearances Story book does not have the zoom feature.

 The book is not in a reusable format.

 The audio playing makes the application unusable.

 The application does not support landscape orientation.

 The application crashes on certain scenarios.

In the next chapter, this report discusses the software requirements for this project. The requirements are

gathered after meetings with the client and the findings from evaluation of iOS application.

17 | P a g e

Chapter 4 | Software Requirement Specifications

After discussing with client about the market share analysis and different cross platform development

methodologies, this project focused on developing the application for Android smartphone. This chapter

defines the set of requirements to build the mobile application for Android platform.

4.1 Functional Requirements

“Functional requirements are statements of the services that the system should provide” [37]

The functional requirements are divided into three parts on the basis on priority as primary, secondary

and tertiary requirements.

 Primary

a) All of the unavailable content (Map, Book and Images) should be generated for this application.

b) The application should support Android smart phones.

c) The application should support landscape and portrait orientation.

d) The application should display historical Geo-referenced maps of the Strath of Kildonan.

e) The application should use the user geo location and display it on the Geo-referenced Map.

f) The application should allow zoom and panning feature on the map.

g) The application should allow pins on the map.

h) The application should allow app usage (multi-threading) during audio play.

 Secondary

a) The application should provide PDF book reading with text zoom support.

b) The application should allow text zoom.

c) The application should display photo galleries.

d) The application should play audio podcasts.

 Tertiary

a) The application should support full screen on photo galleries.

b) The application should be published on the Google Play Store.

Chapter 4 | Software Requirement Specifications

18 | P a g e

4.2 Non Functional Requirements

According to the definition: “Non-functional requirements are constraints on the services and functions

offered by the system”[37]

The non-functional requirements are list down below:

a) The application should follow Android User Interface standards to keep the App usability simple

and easy for the users

b) The application should ask the user to use geo location data and allow the user to change privacy

settings at any time. The geo location data should not be stored within the app and destroyed after

the usage.

c) The application should perform smoothly and keep the user interface separate from database calls

or processing thread.

d) The application should display correct and consistent information with respect to the option select-

ed by the user. The records in database should be unique and identified by primary keys.

The application should handle errors in a user friendly way so the user is aware of any memory or

hardware errors. The application should not crash unexpectedly.

4.3 Conclusion

This chapter presented a set of requirements necessary to develop this mobile application. The require-

ments are divided into three categories based on the priority as primary, secondary and tertiary. Design

and development phases of this project follow the requirements as described in each category.

The next chapter discusses the software development methodology used in this project.

19 | P a g e

Chapter 5 | Software Development Methodology

Mobile applications are developed in a rapid application development environment. The changes are

frequent and requirements keep changing on the basis of feedback from users/client. The application

needs to be tested on multiple devices which are running different versions of the operating system.

This creates a need for a software development methodology which can handle change and provide a

way to meet the rapid development requirements.

This chapter discusses the agile methodology in terms of mobile application development. At the end of

this chapter, it discusses the source code management system used for this project.

5.1 Agile Development

Agile development is a software development methodology that suits the requirements of this project.

According to the Agile Manifesto, responding to change is more important than following a plan
5
.

Figure 16 - Agile Development Phases6

Agile development has several phases as shown in Figure 16 which makes it suitable for rapid applica-

tion development. Each process follows several iterations. The following phases which are used in this

project are discussed below.

5http://agilemanifesto.org/
6Image Credit: http://agileenterprises.com/

http://agilemanifesto.org/
http://agileenterprises.com/

Chapter 5 | Software Development Methodology

20 | P a g e

 Design

In this phase, the application architecture is designed according to the requirements. Several iterations

are performed before moving to the development phase. The final design is verified and approved by all

parties involved in the project i.e client and development team.

 Development

The development phase kick starts the implementation of the application. From setting up environment

to deciding of development tools, all of the decisions are made in this phase. The application is devel-

oped in iterative cycles depending on the feedback from further phases.

 Deployment and Release to Market

The application is deployed on mobile devices and tested by the developer and client. After several iter-

ations and successful feedback from client, the application is released to the market.

5.2 Source Code Management

Figure 17 - lifecycle of a file in Git SCM7

A source code repository provides management and tracking of changes in the application code. Figure

17 shows the lifecycle of a file inside code repository. Using an online repository provides a safe place

to store your code. There are several source code management tools and online providers. This project

is using UnFuddle
8
 online repository which provides free space for Git source management system.

5.3 Conclusion

This chapter discussed about the different phases involved in this project and how mobile applications

are developed following a sequence of iterations.

The next chapter defines the application design which is the software and user interface design.

7 Image Credit: http://git-scm.com/book/en/Git-Basics-Recording-Changes-to-the-Repository
8https://unfuddle.com/

http://git-scm.com/book/en/Git-Basics-Recording-Changes-to-the-Repository
https://unfuddle.com/

21 | P a g e

Chapter 6 | Android Application Design

This chapter discusses the software and user interface design of the application. By designing the soft-

ware architecture for the project, it produces a re-useable and commonly understandable application.

The application can be verified at the end of implementation. Software design also provides the initial

documentation of application[38].

Mobile applications are highly dependent on a friendly user interface. The application is only useful for

the user if it’s easy to use. For creating a user friendly interface this project follows the Android User

Interface guidelines
9
.

6.1 Model View Controller Design Pattern (MVC)

Figure 18 - Android MVC10

By default Android projects follow Model-View-Controller (MVC) design pattern as shown in Figure

18. The Model is responsible for implementing the business logic of the application. It contains the code

which is required by different methods of the application such as database queries, web calls, scientific

calculations and other data interaction methods. Every application has data interaction tasks and Model

connects the other two components within the application providing a channel between Controller (han-

dles user input) and View (rendering user interface).

9
http://developer.android.com/guide/topics/ui/index.html

10
http://www.cs.ccsu.edu/~stan/classes/CS355/notes/03-AndroidUI.html

http://developer.android.com/guide/topics/ui/index.html
http://www.cs.ccsu.edu/~stan/classes/CS355/notes/03-AndroidUI.html

Chapter 6 | Android Application Design

22 | P a g e

The View is responsible for presenting a visualisation of the Model such as rendering the user interface

and sending audio to be played on speakers. Android provides this View component as a tree of sub-

class of View class. Anything which is displayed on the Android user interface is inherited by this View

class.

The Controller is responsible for handling the external actions to the application, such as keystroke,

touchscreen tap or incoming call etc. It is implemented by the Android OS and maintains a queue to

execute each action. The OS removes each action from the queue in the order it was received and exe-

cuted. On execution of the action, the Model may perform some changes in the data and View updates

the user interface accordingly.

The benefit of using design patterns such as MVC in the application allows reusability and easily un-

derstanding of the source code. In Android applications, using Views across different applications is a

common practice and there are many open source View components available. This project also uses

open source Views. The Model is least reused in software applications due to the fact that program logic

differs from application to application. Controller is implemented by the Android OS, so it is reused by

default in every Android application.

6.2 Software Architecture

This project follows the standalone application layered architecture to keep the separation between dif-

ferent components of the system. Layered architecture keeps the design simple and clean. Figure 19

shows the layered architecture of this project.

Figure 19 - Layered Architecture of Timespan App

User Interface layer handles the input events in the form of external interactions with the App. These

inputs are provided by the user in form of type, tap or scroll etc. Utilities layer provides helper functions

to the application such as data parsing, data verification and file read/write. These utilities are used by

the Libraries and Controls layer. Libraries layer contains the third party libraries used by the applica-

Chapter 6 | Android Application Design

23 | P a g e

tion. This project uses only open source third party libraries. Android NDK layer contains the C++

runtime for Android which is used by one of the library in this project. It is used to compile the libraries

which are written using C++ language. Controls layer provides widgets and data controls used by User

Interface layer. These widgets are custom controls developed for this project. Database layer handles all

the database related tasks such as fetching and storing data in the database. Dalvik Runtime is the An-

droid SDK providing the standard Android libraries.

The benefit of using a layered architecture is separating the responsibility of different component within

the system. The layers are able to reuse the functionality among them and application layers are distrib-

uted over physical layers. This provides performance improvement, scalability and error management.

The application is more testable by standard methods and future application extensions are easier to

develop.

6.3 User Interface Design

Android graphical user interface is usually composed of XML files called layout. Before designing the

user interface files, the application screens are designed using static images generally known as

Mockups. These mockups are then transformed into interactive layouts. The mockups for this applica-

tion are used from the iOS application so this part discusses about the Android layout design in XML

files. The user interface logic code is written in the Android Activity file which is the basic unit of an

Android application. An Activity is used to display the Android application user interface which con-

tains widget such as buttons, labels and text boxes etc. Usually the user interface is defined using the

XML file rather than writing in the activity file. At the time of compilation, the XML is loaded by call-

ing setContentView() method in the activity class which implements the onCreate() event handler as

shown in Figure 20:

Figure 20 - Initialization of an Android Layout User Interface

 Views and ViewGroups

View class is the Android’s most basic component from which user interfaces can be created. It is simi-

lar to the Swing JComponent class for Java application. A View derives from the base

class android.view.View. Any visible rectangular area on an Android application is defined by a View.

Usually an Android Activity contains Views and ViewGroups. A View is implemented as a widget that

has an appearance on screen. Widgets are used to create interactive UI components. Examples of widg-

ets are buttons, labels, text boxes, etc. Views can be grouped together into a ViewGroup. Several Views

and ViewGroups can be grouped together in to create a layout. Layouts are invisible containers used for

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

Chapter 6 | Android Application Design

24 | P a g e

holding other Views and nested layouts in a sequence order. Examples of ViewGroup Layout are Line-

arLayout, FrameLayout, AbsoluteLayout, TableLayout and RelativeLayout. LinearLayout and

RelativeLayout are the most common Layouts.

Figure 21 shows the View hierarchy of a ViewGroup in Android Layout.

Figure 21 - Android Layout Hierarchy

Android layouts can be edited using Eclipse which provides both code editor and the graphical editor.

Figure 22 shows the Eclipse Android layout editor.

Figure 22 - Android Graphical UI (Left) and XML Layout (Right)

Chapter 6 | Android Application Design

25 | P a g e

6.4 User Interface Widgets

Android application user interface is composed of different elements known as widgets. These widgets

provide functionality to display different types of data. Most of the basic data widgets such as text and

image are included in the SDK. Developers can also create custom widgets following the guidelines.

There are also third party open source widgets available. This project uses both basic and custom widg-

ets. Every screen in this project is composed of multiple widgets. Figure 23 shows some of the widgets

used on the main screen of the application

Figure 23 - Main Screen Widgets

The main screen is composed of several widgets such as ImageViews and ImageButtons. These widgets

are described later in this part. The background ImageView rotates after a specified interval. Another

interesting feature is the irregular shape menu buttons created using ImageButtons for the main menu.

Chapter 6 | Android Application Design

26 | P a g e

This part briefly describes the different type of widgets used in this project. Detailed information can be

found in the Android documentation
11

.

 TextView

A TextView widget is used for displaying text on the user interface. It offers different customization

such as changing the font type, font color and font size. Other advanced features include such as allow-

ing the user to edit text.

Figure 24 shows how to define a TextView in the Android XML layout.

Figure 24 - Defining a TextView Widget

Figure 25 shows how TextView widget is used in this project as the title text on every screen.

Figure 25 - Clearances Story Screen Widgets

11
http://developer.android.com/reference/android/widget/package-summary.html

 <TextView
 android:id="@+id/top_bar_text"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerInParent="true"
 android:text="Kildonan Trail"
 android:textColor="#251e04"
 android:textSize="22sp"
 />

Chapter 6 | Android Application Design

27 | P a g e

 ImageView

An ImageView widget is used for displaying image on the user interface. The source of image can be

inside the project (local path) or it can also be loaded from URL. The ImageView widget supports dif-

ferent features such as resizing, scaling and opacity control.

The local images are placed inside res/drawable folder. To support multiple screens, the image should

be placed in each drawable folder following hdpi, ldpi, xhdpi etc. Figure 26 shows how to define an

ImageView in the Android XML layout and Figure 23 shows the ImageView widget being used on

different screens of this project for displaying images.

Figure 26 - Defining an ImageView Widget

 ImageButton

An ImageButton widget is used for displaying buttons in the form of images on the user interface. User

can tap on the button which triggers an event in the application. ImageButton allows the developers to

set different images for different states – normal and pressed. The XML for ImageButton is created sep-

arately and placed in the drawable folder. Figure 27 shows how to define ImageButton in the Android

XML layout and Figure 23 shows how ImageButton widget is used for creating the menu buttons on

main screen.

Figure 27 - Defining an ImageButton Widget

 ListView

A ListView widget is used for displaying a scrollable list of items on the user interface. The user can

interact by scrolling and tapping on the list items. The ListView is composed of an Adapter, which is

used for holding the list items. The list items can be stored in an array, database or even by making a

HTTP web call. Each list item is converted into a View before displaying on the interface. Figure 28

shows how to define ListView XML in the Android XML Layout.

 <ImageView
 android:id="@+id/top_bar"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentTop="true"
 android:background="@drawable/top_bar" />

 <ImageButton
 android:id="@+id/audioButton1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentRight="true"
 android:background="@drawable/btn_audio_state"
 android:layout_centerVertical="true"
 android:layout_marginRight="10dp"
 />

Chapter 6 | Android Application Design

28 | P a g e

Figure 28 - Defining a ListView Widget

There are two classes proved by Android - ListView and ExpandableListView, both capable to display

list of scrollable items. The ExpandableListView provides grouping of items. Both classes support list

item of any type so developers can create custom list item types. The Adapter of the ListView manages

the data source in the form of list items and loads them into individual rows. It extends the BaseAdapter

class. Each row can represent a simple text data to complex graphical interface. Developers can also

create custom row interfaces.

Figure 29 shows how ListView widget is used to create list of items in the Kildonan Trail screen.

Figure 29- Kildonan Trail NearBy Screen Widgets

 <ListView
 android:id="@+id/content_list_view"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_below="@id/gallery_relative_layout"
 android:paddingLeft="5dp"
 android:paddingRight="5dp"
 android:paddingTop="8dp"
 android:layout_marginBottom="5dp"
 android:background="@drawable/map_table_bg"
 />

Chapter 6 | Android Application Design

29 | P a g e

 MapView

A MapView is used to display Open Street map widget. It is an open source widget provided by the

OSMDroid library. The data source for map can be online or offline map tiles. It can display maps from

various sources including Open Street API, Google Maps API and for this project reading the map tiles

from MBTiles. Figure 30 shows the code to define MapView in the Android XML layout.

Figure 30 - Defining a MapView Widget

Figure 31 shows how the MapView widget is displayed to the user.

Figure 31 - Kildonan Trail Screen Widgets

 <com.timespan.map.BoundedMapView
 android:id="@+id/mapview"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_above="@+id/mapViewBottomColorBar"
 android:layout_alignParentLeft="true"
 android:layout_below="@+id/top_relative_layout"
 android:layout_marginTop="-5dp"
 android:enabled="true"
 android:visibility="visible" />

ImageView

ImageButton

TextView

ImageButton

MapView

Chapter 6 | Android Application Design

30 | P a g e

6.5 Supporting Multiple Screen Sizes

Designing an Android application which works perfect on a single device is not sufficient. Android is an

open source operating system which is used by different hardware vendors for their smartphones. These

devices vary from small to medium to extra-large screens as shown in Figure 32. When developing an

application, the developers have to make sure their application performs consistent on all screens.

Figure 32 - Android Screen Sizes12

Android provides a user interface platform to solve this problem. This platform handles the user inter-

face behaviour on screens of different sizes. There are basically four types of screens defined in the

documentation
13

:

 xhdpi – extra high density screens are at least 960 x 720 pixels

 hdpi – high density screens are at least 640 x 480 pixels

 mdpi - medium density screens are at least 470 x 320 pixels

 ldpi – low density screens are at least 426 x 320pixels

The ratio between these screens is shown in Figure 33 :

Figure 33 - Ratio between different screen sizes14

12 http://developer.android.com/design/style/devices-displays.html
13http://developer.android.com/guide/practices/screens_support.html

http://developer.android.com/design/style/devices-displays.html
http://developer.android.com/guide/practices/screens_support.html

Chapter 6 | Android Application Design

31 | P a g e

The system handles scaling and resizing to support the application on different screens. To optimize the

performance, images and layout XMLs should be places in their respective folders. The folders are

named according to the screen sizes as shown in Figure 34.

Figure 34 - Android Files Hierarchy for Different Screen Sizes

6.6 Conclusion

This chapter discussed the application design for this Android project. It explained the software design

and pattern used in this project and how the Android user interface is composed of different screen

widgets. It also discussed about how the developer can support multiple screens for the application us-

ing the strategy provided by Android platform.

The next chapter covers implementing this design and user interface into a running application. It co-

vers the major tasks achieved during Android development of this project.

14 Image Credit: http://developer.android.com/guide/practices/screens_support.html

res/layout/my_layout.xml // layout for normal screen size ("default")

res/layout-small/my_layout.xml // layout for small screen size

res/layout-large/my_layout.xml // layout for large screen size

res/layout-xlarge/my_layout.xml // layout for extra large screen size

res/layout-xlarge-land/my_layout.xml // layout for extra large in landscape orientation

res/drawable-mdpi/my_icon.png // bitmap for medium density

res/drawable-hdpi/my_icon.png // bitmap for high density

res/drawable-xhdpi/my_icon.png // bitmap for extra high density

http://developer.android.com/guide/practices/screens_support.html

32 | P a g e

Chapter 7 | Android Software Development

This chapter discusses the implementation of this Android application. The first part of this chapter dis-

cusses about the environment setup and required tools/libraries for this project. The second part covers

the basics of Android applications and third part covers the implementation details which are specific to

this project.

7.1 Development Tools and Libraries

Every software is developed using a specific set of tools and libraries. Following are the tools and li-

braries required for developing this Android application.

 JDK

Java Development Kit
15

 (JDK) is the core of any java application. Android uses the Java SE platform

and JDK provides the implementation for Java SE. The JDK is used for developing and debugging java

applications. It includes the tools such as javac compiler, javadoc and many other features.

 Android SDK

Android Software Development Kit
16

 (SDK) provides the core libraries and tools for Android develop-

ment such the emulator. Developers can create applications using this SDK. The Android SDK also

contains sample projects with source code for guidance and it provides the Dalvik runtime which runs

on top of Linux Kernel, designed for Android platform.

 Eclipse ADT

Android Development Tools17 (ADT) is a plugin for the Eclipse IDE which integrates JDK and An-

droid SDK to provide developers with the Android application development environment. ADT adds

features in Eclipse such as build new Android projects, import, export and Android Layout editing ca-

pabilities. Finally the Android application can be easily debug using ADT and generates the executable

Android file called the APK package.

 Android NDK

Android Native Development Kit
18

 (NDK) is a set of tools which allows writing native-code such as C

and C++ in Java Android application. The application can also reuse existing native-code libraries. Ap-

plications which use the NDK are self-contained and CPU-intensive such as image and signal

processing and physics simulation.

15
 http://www.oracle.com/technetwork/java/javase/downloads/index.html

16
 http://developer.android.com/sdk/index.html

17
 http://developer.android.com/sdk/index.html

18
 http://developer.android.com/tools/sdk/ndk/index.html

http://www.webopedia.com/TERM/A/application.html
http://www.webopedia.com/TERM/S/SDK.html
http://www.webopedia.com/TERM/S/source_code.html
http://www.webopedia.com/TERM/D/Dalvik.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/tools/sdk/ndk/index.html

Chapter 7 | Android Software Development

33 | P a g e

7.2 The Android Software Stack

Before explaining the details specific to this project, this part discusses the basics and foundation of

Android platform which is made up of different components as shown in Figure 35.

Figure 35 - Android Software Stack[39]

The Android Software Stack is composed of Linux Kernel and C/C++ libraries which work under the

layer of application framework to provide services to run applications on the Android devices using the

Android Run Time[39]. The components are briefly explained below.

Linux Kernel: It provides an abstraction between the hardware and other layers in the software stack.

This layer is responsible for core services such as hardware drivers, process and memory management.

Libraries: It provides C/C++ libraries for media handling such as audio/video, SQLite native database,

OpenGL 2D and 3D graphic libraries and SSL /WebKit for internet browsing.

Android Run Time: It provides the Android VM known as Dalvik to run Linux on mobile phones.

This is the main difference between Linux and Android operating system. Dalvik VM and Android Li-

braries inside the Run Time layers powers the applications and forms the application framework.

Chapter 7 | Android Software Development

34 | P a g e

Application Framework: It provides the core classes used by developers to write their applications.

The application framework is an abstraction layer between the Kernel Libraries and user application.

Such classes are used for geo-location, creating activity views, making phone calls, SMS services and

notification management etc.

Application layer: It provides the environment to run Android applications. This includes native and

developers’ applications. These applications use the application framework layer classes to perform re-

quired tasks.

7.3 Project Hierarchy

Android follows a specific folder hierarchy to maintain its file system. Figure 36 shows the folder hier-

archy for this project.

Figure 36 - Android Project Hierarchy

Chapter 7 | Android Software Development

35 | P a g e

7.4 Class Diagram

A class diagram gives the technical implementation details of an application written in any object ori-

ented language. Android uses Java, which is an object-oriented language and the classes in Android are

called Activities. These activities represent views. For this application, we are going to create activities

for each screen. Figure 37 shows the activities and their relations in this project.

Figure 37 - Class Diagram

The activities are briefly explained below:

SplashScreenActivity: This activity displays the app launch animation/intro screen. After a certain

time (3 seconds), the next activity is loaded automatically for the user.

MainActivity: This activity is the main home screen of Timespan Android App. From here, user can

select Clearances Story, Kildonan Trail, Oral Histories, the Longhouse or the About screen.

Chapter 7 | Android Software Development

36 | P a g e

MapMainActivity: This activity shows the Geo-referenced historical Kildonan Trail offline map. User

can scroll and zoom using the touchscreen. This screen supports both landscape and portrait orientation.

There are map pins present on the map as show in Figure 38. User can select any pin and open a detail

view details about each pin.

This activity uses the OSMDroid library to show map and DataHandler for fetching map pins location

information from application database. The left image in Figure 38 shows how MapMainActivity is

displayed to the user.

MapDetailActivity: This activity shows a photo-gallery and text information about the selected point

from map. The data is shown as a list and user can scroll vertically. The photo gallery allows horizontal

scroll to swipe through images. The middle image in Figure 38 shows how MapDetailActivity is dis-

played to the user.

MapNearByActivity: This activity uses user GPS location and display a list sorted by distance to dif-

ferent pin locations on the map. User can tap on any pin to go to MapDetailActivity. The right image in

Figure 38 shows how MapNearByActivity is displayed to the user.

Figure 38 – MapMainActivity, MapDetailActivity and MapNearbyActivity

Chapter 7 | Android Software Development

37 | P a g e

OralHistoryMainActivity: This activity shows the audio podcasts which are displayed in a list view.

User can select any podcast which opens the OralHistoryDetailActivity.

OralHistoryDetailActivity: This activity shows a photogallery and audio button to the user.

Figure 39 shows OralHistoryMainActivity and OralHistoryDetailActivity are displayed to the user.

Figure 39 - OralHistoryMainActivity and OralHistoryDetailActivity

ClearancesActivity: This activity shows the user interactive PDF book containing text and images. It

uses MuPDF library which uses native Android NDK for fast performance. User can swipe through

pages and perform search. Figure 40 shows how ClearancesActivity is displayed to user.

Figure 40 - ClearancesActivity

Chapter 7 | Android Software Development

38 | P a g e

7.5 Offline Maps

The major part of this project focused on creating the Kildonan Trail map. This is based on an historical

offline map of the Starth of Kildonan. Developing this feature involved major challenges in this project.

Due to the unavailability of source code of iOS App and map file assets, this objective have been

achieved by extracting the iOS .ipa (binary) file and obtaining missing assets.

 Extracting the iOS IPA File:

The first step is to decompile the iOS IPA file and extract the source Map tiles. Obtaining the IPA is

pretty straight forward. After installing Timespan iOS App on iPhone, connect it with iTunes and copy

paste the App in hard drive. The IPA files are encrypted by XCode, (Apple’s development IDE).

Figure 41shows the file structure of an IPA file.

Figure 41 - iOS IPA Structure[42]

After obtaining the IPA file, it needs to be decrypted to obtain the data inside IPA file. A Ruby script

called ‘appcrush’[40] is used to perform the decryption. This script uses PNGCrush application inside

XCode to decrypt the IPA contents and provides the readable data.

After the extraction and decryption of IPA, the map tiles file is obtained in MBTiles format.

 Loading MBTiles in MapView

This part describes the background information about MBTiles file and format. MBTiles is a compact

SQLite implementation to store map tiles in a database format. It supports interactivity gird in the form

of coordinates as latitude and longitude. It contains the metadata information such as map bounds and

centre. MBTiles support compression to reduce the size and optimize application performance.

Chapter 7 | Android Software Development

39 | P a g e

The tiles are created as small squares of the total map as shown in Figure 42. For this project, each tile

is a 256x256 resolution image.

Figure 42 - MBTiles format visualisation

MBTiles is a portable map tiles storage format. Timespan iOS application is using MBTiles for the Kil-

donan Trail map feature. These tiles can be reuse on Android by using the open-source library called

OSMDroid. Figure 43 shows the initialization of MBTiles on a MapView using the OSMDroid library.

Figure 43 - Initializing and Loading MBTiles in MapView widget

 private void initMBTiles(){

 //initialize the tile source

XYTileSource MBTILESRENDER = new XYTileSource("mbtiles",
ResourceProxy.string.offline_mode, MAP_MIN_ZOOM, MAP_MAX_ZOOM, 256,
".png", "http://timespan.org/");

 SimpleRegisterReceiver simpleReceiver = new
 SimpleRegisterReceiver(this);

File f = new File(Environment.getExternalStorageDirectory(),
"clearances-story-app-map-05.mbtiles");

 IArchiveFile[] files = { MBTilesFileArchive.getDatabaseFileArchive(f) };

MapTileModuleProviderBase moduleProvider = new
MapTileFileArchiveProvider(simpleReceiver, MBTILESRENDER, files);
MapTileProviderArray tileProviderArray = new
MapTileProviderArray(MBTILESRENDER, this, new
MapTileModuleProviderBase[] { moduleProvider });

 //load the tilesource into MapView widget

TilesOverlay tilesOverlay = new TilesOverlay(tileProviderArray, this);

this.mapView = (MapView) findViewById(R.id.mapview);

 this.mapView.getOverlayManager().setTilesOverlay(tilesOverlay);
 tilesOverlay.setLoadingBackgroundColor(Color.WHITE);
 this.mapView.postInvalidate();

 }

Chapter 7 | Android Software Development

40 | P a g e

 Displaying the Map Pins and Map Detail View

Figure 44 - Map Pins(Left) and Map Detail View (Right)

The map pins are displayed by placing them on the map using Latitude and Longitude grid. A digital

map is one which is built with the latitude and longitude database. The MBTiles map file for this project

contains the digital information about the Strath of Kildonan. OSMDroid supports displaying of map

annotation pins. Following two classes are used to draw the pins:

 ExtendedOverlayItem

 ItemizedOverlayWithBubble

The pins are distributed as ten main pins and each main pin has several sub pins. The data for the pins is

stored in the application SQLite database. The pins with numbers are the main pins and pins with al-

phabets are the sub pins. On tapping on any pin, a callout is displayed as shown in Figure 44 . The

callout contains a button to open a further detail view called MapDetai ViewActivity.

The detail view contains a photo gallery, list view and audio options. User can scroll through the list

view and slide left/right on the photo gallery. The audio can be played in the background so user can

still use the list view and photo gallery while the audio is being played.

Chapter 7 | Android Software Development

41 | P a g e

7.6 PDF Reader

Figure 45- MuPDF Reader

The Clearances Story feature is an interactive book with a background theme, hyperlinks and images.

The iOS application has not implemented this feature in a reusable format, such as PDF. So the first task

is to develop the book in PDF format as shown in Figure 45. Book content is provided in MS Word

documents and PNG files. The book contains a table of contents and ten chapters. The user can tap on

any chapter from the table of contents to jump to that chapter.

Loading the PDF onto Android device involves handling of memory issues. Rendering and user interac-

tion also raises many performance issues. For this project an open source PDF library MuPDF is used.

It is developed by Artifex Software Inc
19

 and works for Android, Windows and Linux. The integration

of MuPDF has been done using online help.
20

7.7 Conclusion

This chapter covered the implementation details of this project and highlighted the major challenges

involved building the application which are the Kildonan Trail and Clearances Story.

 The next chapter covers how to publish an Android application on the Android market called the

Google Play Store
21

.

19 http://www.artifex.com/
20http://stackoverflow.com/a/17735927
21 https://play.google.com/

http://www.artifex.com/
http://stackoverflow.com/a/17735927
https://play.google.com/

42 | P a g e

Chapter 8 | Publishing

After completing the development and testing your application on different devices, the final step is to

publish the application on the Google Play Store. This chapter discusses in detail about setting up ac-

count on the Google Play Store and hosting the external files on Google Play server.

Due to a limited available help for expansion files, this chapter includes demonstration of technical im-

plementation for hosting the external files in the form of code snippets. This demonstration can be

helpful for anyone working on a similar problem.

8.1 Setting up Google Play Account

A Google Play developer account provides the facility to publish the application on the market store.

Following steps show how to setup the Google Play account.

a) Open URL in browser https://play.google.com/apps/publish/signup/

b) Login with using your Google account

c) Read and accept the Developer Agreement

d) Pay the registration fee as shown in Figure 46.

Figure 46 - Google Play Store Registration Payment

https://play.google.com/apps/publish/signup/

Chapter 8 | Publishing

43 | P a g e

e) After accepting the payment, the signup process asks for account details as shown in Figure 47.

Figure 47 - Google Play Store Registration Account Details

f) After completing the registration process, the developer console can be accessed as shown in Figure

48.

Figure 48 - Google Play Store Developer Console

Chapter 8 | Publishing

44 | P a g e

8.2 Expansion Files

This part covers the technical implementation of hosting external files following the guidelines from

Android documentation
22

.

An APK file is generated after compiling the final implementation of the Android application. This APK

is hosted on the Google Play store so that the users can easily download and install on their devices.

Google Play store allows a maximum size of 50MB for the APK file. The total size of this application

including map tiles, audios and PDF easily exceeds the maximum size allowed by Google. Until March

2013, applications had to host the media files such as audio, video or map files on a private server and

download them after the installation on device. Hosting on a private server involves cost and server

issues to be handled by the developer. The mechanism is still same but Google now provides the file

hosting called Expansion Files.

The expansion files have a maximum limit of 4GB with 2GB per file size. So we can upload two files

of 2GB each. The files are in “obb” format, which is basically a zip file. The file is downloaded on SD

Card and then either extracted or read from the zipped file instead of unzipping the content. The expan-

sion files are uploaded at the time of uploading the APK file as shown in Figure 49:

Figure 49 - Adding Expansion Files

 Expansion Files Basics

There are basically two types of expansion files

 Main – the primary expansion file

 Patch –the optional expansion file

Although there is no restriction of how to use these files but it is recommended that main file is used for

the main content and the patch is used for the content that needs to be updated with every release. Even

22
 http://developer.android.com/google/play/expansion-files.html

http://developer.android.com/google/play/expansion-files.html

Chapter 8 | Publishing

45 | P a g e

if the application does not offer content updates with every new release, the expansion files are required

to be uploaded every time. The expansion files should be recreated because the previous files cannot

work with the new “version code” of the application.

Before uploading the expansion files, the developer needs to create them locally and test the applica-

tion. The files follow a naming convention specified in the documentation.

 [main|patch].<expansion-version>.<package-name>.obb

The first part [main or patch] defines the type of this expansion file. Only one main file and one patch

can be uploaded for each application. The second part <expansion-version>is an integer value which is

same as the application's android:versionCode value.

The third part <package-name> is the application’s package name specified in AndroidManifest.xml

The expansion file should be placed in the SD card after creating using the naming convention. The ap-

plication should check whether the files are present every time the user uses the app. Following is the

file path in SD card for most of the Android devices.

 Sdcard0/Android/obb/org.timespan.uk/expansionfile.obb

http://developer.android.com/guide/topics/manifest/manifest-element.html#vcode

Chapter 8 | Publishing

46 | P a g e

 Expansion Files Implementation

This part discusses the implementation details of Expansion files. Figure 50 gives an overview of the

complete process.

Figure 50 - Expansion files implementation

Most of the time, Google Play allows the application to download and save the expansion files at the

time of installation. However, in some cases Google Play cannot allow to download the expansion files

or the user might have deleted previously downloaded expansion files. To handle these situations, the

app must be able to download the files itself when the main activity starts, using a URL provided by

Google Play. Following steps highlights the application installation and expansion file download sce-

narios.

 User installs the app from Google Play store.

 The expansion files are downloaded if Google Play allows the application.

 Else the application is installed and the expansion files are not downloaded if Google Play does

not allow the application.

 User launches the application; it should automatically check whether the expansion files are in

the SD card and then user can use the application.

Chapter 8 | Publishing

47 | P a g e

 Else the application should download the expansion files over HTTP from Google Play. This is

achieved by sending a request to the Google Play client using the Google Play's Application li-

censing service. The application receives the file name, file size, and URL for each expansion

file. Then the application starts downloading the files and save them to the SD Card.

Application Licensing Service is used for enforcing licensing policies and ensures that the user has paid

for the app. Licensing service has been enhanced to return the download URL of the expansion pack

therefore, they can be used in free apps as well. For this reason the application need to need to include

License Verification Library(LVL) to use expansion files.

A Downloader Library is provided by Google which implements the functionality of requesting expan-

sion file URLs using the licensing service and then downloading them. It also supports pause, resume

during download.

Using Downloader Library

 First open the Android SDK Manager in Eclipse and expand Extras as shown in Figure 51:

 Check the following two packages

o Google Play Licensing Library package

o Google Play APK Expansion Library package

Figure 51 - Installing Google Play Licensing and APK Expansion Library

 After installation, the packages are downloaded in the <SDK/extras/google> directory.

http://developer.android.com/google/play/licensing/index.html
http://developer.android.com/google/play/licensing/index.html
http://developer.android.com/sdk/exploring.html

Chapter 8 | Publishing

48 | P a g e

 Import both of the projects market_licensing and downloader_library in Eclipse.

 Add the following permissions in Android Manifest as shown in Figure 52

Figure 52 – Android Manifest Permissions for Downloader Library

The downloader library provides the following features:

 Handles network connectivity by registering BroadcastReceiver to listen to CONNECTIVI-

TY_ACTION

 In case of download failure, downloader library schedules an RTC_WAKEUP alarm to retry the

download

 Verifies SD Card operations such as mounting, space availability, write access and handling du-

plicate files errors etc. In-case of any error, it notifies the user by a notification

Declare the service in the Android Manifest file as shown in Figure 53.

Figure 53 - Android Manifest Permissions for Downloader Service

<?xml version="1.0" encoding="UTF-8"?><manifest ...>
 <!-- Required to access Google Play Licensing -->
 <uses-permissionandroid:name="com.android.vending.CHECK_LICENSE"/>

 <!-- Required to download files from Google Play -->
 <uses-permissionandroid:name="android.permission.INTERNET"/>

 <!-- Required to keep CPU alive while downloading files (NOT to keep screen
awake) -->
 <uses-permissionandroid:name="android.permission.WAKE_LOCK"/>

 <!-- Required to poll the state of the network connection and respond to
changes -->
 <uses-permissionandroid:name="android.permission.ACCESS_NETWORK_STATE"/>

 <!-- Required to check whether Wi-Fi is enabled -->
 <uses-permissionandroid:name="android.permission.ACCESS_WIFI_STATE"/>

 <!-- Required to read and write the expansion files on shared storage -->
 <uses-permissionandroid:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
 ...
</manifest>

<application ...>

 <receiver android:name=".SampleDownloaderService" />

</ application >

Chapter 8 | Publishing

49 | P a g e

Implementing Alarm Receiver

The downloader service uses alarm service by scheduling an RTC_WAKEUP call. This should be de-

fined in the following way as shown in Figure 54 to make sure the application downloads and restarts if

necessary.

public class SampleAlarmReceiver extends BroadcastReceiver {

 @Override

 public void onReceive(Context context, Intent intent) {

 try {

DownloaderClientMarshaller.startDownloadServiceIfRequired

(context, intent,

 SampleDownloaderService.class);

 } catch (NameNotFoundException e) {

 e.printStackTrace();

 }

 }

}

Figure 54 - Alarm Receiver Initialisation

Declare the receiver in the Android Manifest file as shown in Figure 55:

Figure 55 - Android Manifest Permissions for Alarm Receiver

Starting the download using the Downloader Library requires the following procedures:

 Check for the files if they are downloaded.

 The library determines if the download is required or not when the download is started.

Possible values are NO_DOWNLOAD_REQUIRED, LVL_CHECK_REQUIRED, DOWN-

LOAD_REQUIRED.

 Initialize IStub if the library returns anything other than NO_DOWNLOAD_REQUIRED.

 IStub is used for binding application activity with the downloader service.

<application ...>

 <receiver android:name=".SampleAlarmReceiver" />

</ application >

http://developer.android.com/reference/android/app/AlarmManager.html#RTC_WAKEUP

Chapter 8 | Publishing

50 | P a g e

Receiving Download Progress

During the download process of expansion files, it is necessary to show progress to the user. The appli-

cation needs to interact with the download server by implementing IDownloaderClient interface.

Commonly the activity which starts the download process in the application should implement this in-

terface and display the download progress to the user. Figure 56 shows the Initialization of

IDownloaderService interface.

private IDownloaderService mRemoteService;

...

@Override

public void onServiceConnected(Messenger m) {

 mRemoteService = DownloaderServiceMarshaller.CreateProxy(m);

 mRemoteService.onClientUpdated(mDownloaderClientStub.getMessenger());

}

Figure 56 – Initialization of IDownloaderService interface.

After initialization of IDownloaderService, the following methods are used in the application for updat-

ing the progress and performing other download operations.

 requestPauseDownload() – to pause the download

 requestContinueDownload() – to resume download

 onDownloadProgress(DownloadProgressInfo progress) – returns download progress

Once the files are downloaded successfully, the application has to read the files.

Reading the expansion Files

Reading the files can be achieved in several ways. It does not matter how the application performs ex-

pansion files reading, it must perform an external storage check before reading. This check makes sure

that the SD Card is present in the device and the user has not removed it

Figure 57 shows how to initialize the path variables and read the expansion files:

Chapter 8 | Publishing

51 | P a g e

Figure 57 - Reading the Expansion Files

In-case of reading the file without extracting it, this can be achieved by using the APK Expansion Zip

Library as shown in Figure 58.

// Get a ZipResourceFile representing a merger of both the main and patch

files

ZipResourceFile expansionFile =

APKExpansionSupport.getAPKExpansionZipFile(appContext,

 mainVersion, patchVersion);

// Get an input stream for a known file inside the expansion file ZIPs

InputStream fileStream = expansionFile.getInputStream(pathToFileInsideZip);

Figure 58 - Reading the Expansion Files from Zip

// The shared path to all app expansion files

private final static String EXP_PATH = "/Android/obb/";

static String[] getAPKExpansionFiles(Context ctx, int mainVersion, int

patchVersion) {

 String packageName = ctx.getPackageName();

 Vector<String> ret = new Vector<String>();

 if

(Environment.getExternalStorageState().equals(Environment.MEDIA_MOUNTED)) {

 // Build the full path to the app's expansion files

 File root = Environment.getExternalStorageDirectory();

 File expPath = new File(root.toString() + EXP_PATH + packageName);

 // Check that expansion file path exists

 if (expPath.exists()) {

 if (mainVersion > 0) {

 String strMainPath = expPath + File.separator + "main." +

 mainVersion + "." + packageName + ".obb";

 File main = new File(strMainPath);

 if (main.isFile()) {

 ret.add(strMainPath);

 }

 }

 if (patchVersion > 0) {

 String strPatchPath = expPath + File.separator + "patch." +

 mainVersion + "." + packageName + ".obb";

 File main = new File(strPatchPath);

 if (main.isFile()) {

 ret.add(strPatchPath);

 }

 }

 }

 }

 String[] retArray = new String[ret.size()];

 ret.toArray(retArray);

 return retArray;

}

Chapter 8 | Publishing

52 | P a g e

8.3 Conclusion

This chapter explained the procedure of publishing Android application on the Google Play Store. One

of the major challenges involved in this process was to handle the implementation of expansion files.

Benefits of using expansion files give ability to the application to update without re-downloading all of

the original assets. Because Google Play allows the developer to provide two expansion files with each

APK, the patch file can be used for providing updates and new assets. Doing so avoids the need to re-

download the main expansion file which could be large and expensive for users.

The patch expansion file is technically the same as the main expansion file and neither the Android sys-

tem nor Google Play perform actual patching between the main and patch expansion files. The

application code must perform any necessary patches itself.

As long as the main expansion file associated with the APK is not changed in the Developer Console,

users who previously installed your application will not download the main expansion file. Existing

users receive only the updated APK and the new patch expansion file (retaining the previous main ex-

pansion file).

The next chapter concludes this report and presents the overall work completed in this project. Several

new features which can be added to this application are discussed in the future section of next chapter.

53 | P a g e

Chapter 9 | Conclusion

This project successfully delivers a user interactive Android mobile application for Timespan museum.

The purpose of the application is to provide the user with a virtual tour about Highland Clearances [1]

using an interactive book, audio narratives and a historical map. The project evaluates Timespan’s exist-

ing iOS App and extends it with added features for Android. Table 3 displays a summary of major

improvements achieved in this project. It is worth mentioning that the source code for iOS was unavail-

able and this project had to achieve the similar application behaviour without it.

Feature iOS Android

Reusable Book (PDF) X

Text Zoom X

Text Search X

Reusable Map (MBTiles)

Map Zoom

Map Location Pins

Full Screen photo gallery

Audio Playback

Audio Playback with App Usage X

Landscape Orientation Support X

Table 3- Features Comparison between Timespan iOS and Android application

The application is ready to be published on the Google Play Store. The feedback of the client is very

positive and according to the Timespan’s Director: (see Appendix C):

“The product fully meets our requirements, and we a more than happy with the

outcome of the project. As discussed, the full application could not be realised due

to the given timeframe; nevertheless, the student found elegant ways of reducing

content such as adapting the menu or replacing content. The new product contains

improvements such as added functionality in the story and the trail.”

iOS and Android smartphones now cover more than 88% of the smartphone market (see Figure 6).

Therefore, the potential user base for Timespan is very broad and provides room for significant im-

provement in marketing and extending audience. Timespan has the potential to promote further

awareness about Scottish History.

54 | P a g e

9.1 Future Work

 Support for Tablets

This application can be extended to support iPad and Android Tablets. Although the iOS application can

work on iPad and Android application can work on Android tablets, the user interface is not designed

for large screen tablets. This can be achieved by creating user interface designs for large screens and

integrating it into the existing code.

 Application Updates

A server side implementation can provide content updates to the application without downloading the

application again. This can be achieved by keeping the existing offline features and then connecting the

application with a server. The users can also provide feedback/suggestions using the application which

can be stored on the server.

 Merchandise Shop

People visiting museums often buy souvenirs such as drawings and postcards. The application can im-

plement a merchandise shop feature from where users can buy online. The server implementation is

required for this feature to perform the transaction and inventory management tasks. The mobile appli-

cation will provide the items catalogue on the device.

 Integrate Unity 3D

A more advanced feature of 3D Virtual World can be integrated using Unity3D. It is a cross-platform

game engine used for developing video games for web, desktop, console and mobile platforms. It can

also be used to deploy cross-platform 3D model objects. According to Unity3D’s press release, it has

one million registered developers[41]. By integrating Unity 3D, the museum application can provide 3D

Virtual World experience to smartphone and tablets users.

55 | P a g e

References

[1] J. Prebble, The Highland Clearances. Penguin Books, London, 1963, pp. 60-61.

[2] Bluemungus, “Timespan: Museum Without Walls App (Scotland’s Clearances Story),” 2012.

[Online]. Available: http://www.bluemungus.com/projects/timespan-museum-without-walls/.

[3] C. . Rahul Raj, “A study on approaches to build cross-platform mobile applications and criteria

to select appropriate approach,” 2012 Annual IEEE India Conference (INDICON), pp. 625-629,

Dec. 2012.

[4] J. Kim, “Architectural patterns for service-based mobile applications,” 2010 IEEE International

Conference on Service-Oriented Computing and Applications (SOCA), pp. 1-4, Dec. 2010.

[5] K. Andersson and D. Johansson, “Mobile e-services using HTML5,” 37th Annual IEEE Confer-

ence on Local Computer Networks -- Workshops, pp. 814-819, Oct. 2012.

[6] Z. Benenson, F. Gassmann, and L. Reinfelder, “Android and iOS Users ’ Differences concerning

Security and Privacy,” pp. 817-822, 2013.

[7] L. Corral, A. Sillitti, A. Garibbo, and P. Ramella, “Evolution of Mobile Software Development

from Platform-Specific to Web-Based Multiplatform Paradigm,” pp. 181-183.

[8] P. Smutný, “Mobile development tools and cross-platform solutions,” pp. 653-656, 2012.

[9] M. Palmieri, I. Singh, and A. Cicchetti, “Comparison of cross-platform mobile development

tools,” 2012 16th International Conference on Intelligence in Next Generation Networks, pp.

179-186, Oct. 2012.

[10] G. han, E.; Baciu, “Appendix A: Starting the iOS SDK,” in Introduction to Wireless Localiza-

tion:With iPhone SDK Examples, Wiley-IEEE Press, 2012, pp. 245 -259.

[11] S. C. Lauren Darcey, Introducing Android Development with Ice Cream Sandwich. Pearson Ed-

ucation, 2011.

[12] A. Rizk, Beginning BlackBerry Development. APRESS, 250AD, p. 2009.

[13] D. J. Tom Miller (Author), Developing for Windows Phone 7 and Xbox 360, 1st ed. Addison

Wesley, 2010, p. 528.

[14] C.-marius Grigorescu and S.-aurel Moraru, “Industrial Software Monitoring System Extension

for Mobile Devices Based on GlassFish and PhoneGap,” no. Epe, pp. 25-27, 2012.

[15] L.-L. Chen and Z.-L. Liu, “Design of Rich Client Web Architecture Based on HTML5,” 2012

Fourth International Conference on Computational and Information Sciences, pp. 1009-1012,

Aug. 2012.

[16] P. E. Dickson, “Cabana : A Cross-platform Mobile Development System,” pp. 529-534, 2012.

[17] S. Kaltofen, M. Milrad, and A. Kurti, “A Cross-Platform Software System to Create and Deploy

Mobile Mashups,” pp. 518-521, 2010.

56 | P a g e

[18] R. Zioma, “Unity : iOS and Android - Cross Platform Challenges and Solutions,” p. 4503, 2012.

[19] A. Puder and O. Antebi, “Cross-Compiling Android Applications to iOS and Windows Phone

7,” Mobile Networks and Applications, vol. 18, no. 1, pp. 3-21, May 2012.

[20] I. Papapanagiotou, “Smartphones vs . Laptops : Comparing Web Browsing Behavior and the

Implications for Caching,” pp. 423-424.

[21] T. Basic and S. Loop, “Graphics Performance in Rich Internet Applications,” 2012.

[22] D. Sambasivan, N. John, S. Udayakumar, and R. Gupta, “Generic framework for mobile appli-

cation development,” 2011 Second Asian Himalayas International Conference on Internet (AH-

ICI), pp. 1-5, Nov. 2011.

[23] D. Sin, E. Lawson, and K. Kannoorpatti, “Mobile Web Apps - The Non-programmer’s Alterna-

tive to Native Applications,” 2012 5th International Conference on Human System Interactions,

pp. 8-15, Jun. 2012.

[24] H. Reza and N. Mazumder, “A Secure Software Architecture for Mobile Computing,” 2012

Ninth International Conference on Information Technology - New Generations, pp. 566-571,

Apr. 2012.

[25] D. Pavlić, M. Pavlić, and V. Jovanović, “Future of Internet Technologies,” pp. 1366-1371, 2012.

[26] I. D. Corporation, “IDC - Press Release Feb 2013 Smartphones,” 2013.

[27] ComScore, “ComScore Press Release Dec 2012,” 2012.

[28] I. D. Corporation, “IDC - Press Release Dec 2012 Tablets,” 2012.

[29] D. Melanson, “Google now at 1.5 million Android activations per day,” Engadget, 2013.

[Online]. Available: http://www.engadget.com/2013/04/16/eric-schmidt-google-now-at-1-5-

million-android-activations-per/.

[30] Google, “Android OS Statistics,” 2013. [Online]. Available:

http://developer.android.com/about/dashboards/index.html.

[31] E. Chin, A. P. Felt, V. Sekar, and D. Wagner, “Measuring user confidence in smartphone securi-

ty and privacy,” Proceedings of the Eighth Symposium on Usable Privacy and Security -

SOUPS ’12, no. 1, p. 1, 2012.

[32] H.-ching Chang, V. Tech, and K. W. Cameron, “Energy-Aware Computing for Android Plat-

forms.”

[33] F. Ding, F. Xia, W. Zhang, X. Zhao, and C. Ma, “Monitoring Energy Consumption of

Smartphones,” 2011 International Conference on Internet of Things and 4th International Con-

ference on Cyber, Physical and Social Computing, pp. 610-613, Oct. 2011.

[34] J. K. Lee, “Android Programming Techniques for Improving Performance - I L,” Memory.

[35] R. Harrison, D. Flood, and D. Duce, “Usability of mobile applications: literature review and ra-

tionale for a new usability model,” Journal of Interaction Science, vol. 1, no. 1, p. 1, 2013.

57 | P a g e

[36] Apple, “iOS Human Interface Guidelines,” 2013. [Online]. Available:

http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/MobileHIG/

Introduction/Introduction.html.

[37] I. Sommerville, Software Engineering, 9th ed. Addison-Wesley, 2010, p. 792.

[38] D. Balasubramaniam, “Architectural Styles & Patterns - Lecture Notes - CS5033 Software Ar-

chitecture.” 2013.

[39] R. Meier, Professional Android 4 Application Development, 3rd ed. Wrox, 2012, p. 864.

[40] P. Boctor, “AppCrush,” 2011. [Online]. Available: http://github.com/boctor/idev-

recipes/Utilities/appcrush.

[41] Unity3D, “Fast Facts,” 2013. [Online]. Available: http://unity3d.com/company/public-relations/.

58 | P a g e

Appendix A – External Libraries

 MuPDF

http://www.mupdf.com/doc/how-to-build-mupdf-for-android

 OSMDroid

https://code.google.com/p/osmdroid/

 OSMDroidBonusPack

https://code.google.com/p/osmbonuspack/

 SL4J

http://www.slf4j.org/android/

 JSoup

http://jsoup.org/download

http://www.mupdf.com/doc/how-to-build-mupdf-for-android
https://code.google.com/p/osmdroid/
https://code.google.com/p/osmbonuspack/
http://www.slf4j.org/android/
http://jsoup.org/download

59 | P a g e

Appendix B - Compiling the Source Code

1. First of all make sure you have all the libraries mentioned in Appendix A.

2. Import the source code in eclipse as an Android project.

3. Now from command line go to project’s /jni folder.

4. Run the command ndk-build.

5. Go back to eclipse and run the Android Application.

6. Select emulator or device

60 | P a g e

Appendix C – Client Feedback

Dear Alan,

I would like to thank you for initiating the Android app development of timespan's clearance trail app,

as undertaken by your master student Mujtaba.

The product fully meets our requirements, and we a more than happy with the outcome of the project.

As discussed, the full application could not be realised due to the given timeframe; nevertheless, the

student found elegant ways of reducing content such as adapting the menu or replacing content. The

new product contains improvements such as added functionality in the story and the trail.

There has been a high demand for an android version of the app and we are excited to be able to offer

our visitors this new product.

With best wishes,

Anna Vermehren,

Development Director,

Timespan

Email: director@timespan.org.uk

