
StAR-Wiki: An Augmented Reality Wiki

Samuel Koch
January 18, 2014



StAR-Wiki: An Augmented Reality Wiki

Samuel Koch
Student

sk524@st-andrews.ac.uk

ABSTRACT
I present a novel Augmented Reality (AR) wiki system called
StAR-Wiki. Keeping up-to-date with the ever changing
world of information is extremely difficult, especially when
users desire different subsets of all the information available.
My StAR-Wiki system shows information from user-selected
subscription layers and provides users with a customisable
experience. Giving end-users the functionality to add and edit
the information directly in the app creates an extensible AR
system. The system can then be adapted to any environment
to build a wealth of information gathered from multiple users,
thus creating an AR wiki. Validation tests carried out show
that all features of the system work as expected.

DECLARATION
I declare that the material submitted for assessment is my/our
own work except where credit is explicitly given to others by
citation or acknowledgement. This work was performed dur-
ing the current academic year except where otherwise stated.
The main text of this project report is 10,841 words long,
including project specification and plan. In submitting this
project report to the University of St Andrews, I give permis-
sion for it to be made available for use in accordance with the
regulations of the University Library. I also give permission
for the title and abstract to be published and for copies of the
report to be made and supplied at cost to any bona fide library
or research worker, and to be made available on the World
Wide Web. I retain the copyright in this work.

INTRODUCTION
Augmented Reality (AR) aims to create the sensation that
makes virtual objects appear present in the real world. This
is done by combining Virtual Reality (VR) elements with the
real world, in real time. AR in its simplest form can be over-
laying a 2D image onto a video stream, but it is also possible
to render 3D objects that can appear to belong to a scene con-
taining 3D objects.

Though VR and AR are related, both lie towards opposite
ends of the Reality-Virtuality (RV) Continuum [19], a con-
tinuum going from the real environment to a virtual environ-
ment. VR can be fictional, consisting of virtual objects, and
therefore is not always restricted by laws of physics. In con-
trast, AR provides augmentation of real world objects, being
observed directly in person, through some kind of a window
or a video display.

An example of an AR environment can be seen in Figure 1,
where a user is viewing information about a coffee machine
in a work office whilst using the StAR-Wiki system. They are
in a real world environment, experiencing a real world object

Figure 1. The StAR-Wiki system being used in an office to display infor-
mation about a coffee machine recognised by the system.

through a mobile device that is streaming a live camera feed.
Information about the coffee machine, such as its working
state, is overlaid onto the screen that the user can interact with
to find out more information or update themselves.

Augmented Reality
There are three basic strategies [17] when approaching AR.
Firstly by augmenting the user, making them wear or carry a
device normally on their head or in their hands, so they can
obtain information about physical objects. This began with
the earliest head-mounted display by Sutherland in 1968 [26].

At Harvard University in 1968, Ivan Sutherland created a
working prototype of what is generally considered to be the
first VR and AR system. The user wore a head-mounted dis-
play (HMD), and although the system only used simple wire-
frame graphics, the project became the genesis of AR.

The second strategy involves augmenting physical objects, by
embedding input or output devices on or within the objects.
In the 1970s, Papert [24] created a floor turtle, a small robot,
that could be controlled by a programming language called
Logo. LEGO/Logo was built from Logo, allowing Logo to
control constructions made from LEGO bricks, motors and
gears. The system takes the computer code and augments it
into the physical robot object.

The last strategy augments users or objects in their surround-
ing environment. Independent devices collect information
from the environment and display it onto objects and track
users interaction with them. This project will focus on this

1



AR strategy, although there are many applications of all three
strategies.

Doctors may use AR systems to train for certain surgeries,
or even use it during surgeries to detect features that cur-
rent technology, such as MRI or CT scans cannot. As-
sembly, maintenance and repair of complex machinery is
another main application of AR. Instructions superimposed
upon equipment, rather than in manuals with text and pic-
tures, can show step-by-step the tasks required.

Other applications include robot path planning, using a local
virtual robot to test and determine the best path which is sent
to the real robot to execute. AR is also used in entertainment,
where actors stand in front of a blue screen and a computer-
controlled motion camera records the scene. A 3D virtual
background can then be applied to the scene.

Military aircraft and helicopters use Head-Up Displays and
Helmet-Mounted Sights to superimpose vector graphics on
the pilots view of the real world [4]. This provides basic nav-
igation and flight information and sometimes registers targets
in the environment, giving pilots a way to aim the aircrafts
weapons.

Once computers increased in power and decreased in size,
mobile devices became rapidly feasible, providing flexibility
for new kinds of applications exploiting the users surrounding
context [11]. AR can now be used away from conditioned en-
vironments in research laboratories and special-purpose work
areas. Combining global tracking, wireless communication
and location-based services provides the base for a mobile
AR experience.

Combining real and virtual objects enhances a users percep-
tion of and interaction with the real world. The objects dis-
played may provide information to users that they may not
be able to discover using their own senses and can even help
them perform real-world tasks. There are many real-world
applications that greatly benefit from AR.

Some modern AR applications include wearable glasses, such
as Google Glass [9], that provide users with navigation, a
camera and voice control. Mobile AR applications, such as
Layar and Wikitude, provide users with information, from
one or more sources, about the environment around them,
wherever they are.

In principle, AR systems have very few limits, mainly the in-
formation available to overlay. However, in practice, some of
the core technologies, used to retrieve locations and calculate
the direction the device is facing, are not well suited for use
indoors. AR has many uses indoors, such as navigating a user
through a large building or displaying additional information
about art objects in a museum.

Inside buildings with reinforced concrete, satellite signals
used for the Global Positioning System (GPS) get disrupted,
causing inaccurate locations, making GPS unusable inside a
building. Compasses rely on the magnetic field of the Earth,
however, they too get disrupted inside a building [27]. With-
out these two essential technologies unusable indoors, there is

a necessity for the aid of other means of measuring direction
and location inside a building.

There have been many studies to determine the feasibility of
other methods to get indoor location, using triangulation of
wireless signals, motion tracking with accelerometers or gy-
roscopes, specific visual recognition or a combination of the
methods.

Li et al. [14] created a meter-level indoor positioning system,
that was infrastructure free, device position independant, user
adaptive and easy to deploy. It relied solely on the device sen-
sors, tracking the steps taken by the user and used algorithms
to estimate the stride length for each user and determine the
direction of the user at each step. However, the system strug-
gled to correctly determine the heading, due to the disruption
of the magnetic fields whilst indoors.

The solution many systems choose to overcome this problem
is to implement a specific visual recognition, normally using
Quick Response (QR) codes.

QR codes [33] are two-dimensional codes and an ISO stan-
dard which can encode specific information, such as text, a
Uniform Resource Locator (URL) or other data. They can
handle 7,089 numeric characters, 4,296 alphanumeric char-
acters and 2,953 binary. Widely used in e-commerce, adver-
tising and product tracking, QR codes have provided better
integration with more realistic and appealing contents.

There are three main uses for QR codes in AR systems. They
may contain information about the QR code, information
about content to be augmented or information used to track
the code. However, a system using QR codes, to provide AR
information indoors, must rely on QR codes to have been al-
ready been created and placed inside a building before users
are able to discover the information. An improved system
would attempt to use other indoor technologies, such as im-
age recognition rather than QR codes to provide information
indoors to users. However, image recognition still requires
images of the objects to be taken before users can discover
them.

StAR-Wiki
Current AR systems have content provided by developers or
businesses, who subscribe to systems to create content about
their business. This content is limited to the imagination of
the developers and the businesses that subscribe, which may
not be what users are interested in. The users of these systems
tend to set the trends for the information that gets created, but
that creates a delay for users before they can explore the in-
formation. The solution to this would be to provide a system
with very little or no content and provide users with the abil-
ity to create the content themselves, that is directly relevant
to them and others.

The StAR-Wiki system I present in this dissertation will pro-
vide an AR system, using GPS and network location for out-
door use, and image recognition for indoor use, rather than
relying on QR codes. No content will be provided on the
developer side, but will allow users to create all the content
themselves on their own devices, by tagging locations and ob-

2



jects with their own information. All the information will be
stored in a central Wiki, which all users of the system will
have access to. This information can then be kept up-to-date
by users to create a Wiki containing only relevant information
to users.

OBJECTIVES
This section lists the objectives of the project in order of im-
portance, with the primary objectives providing the main fea-
tures to implement. The secondary and tertiary objectives
provide extensions to the project that will be completed if
there is time.

Primary Objectives
• An Android app capable of displaying a central store of

wiki information as a graphical display over a continuous
camera stream.

• A central store of structured wiki information that can be
added to or retrieved by any user.

• An in-app user interface allowing users to add or edit in-
formation stored in the wiki.

• An investigation of how to best leverage multiple sensors
for the purposes of this project.

Secondary Objectives
• Using additional sensors and AR features to enhance the

user experience and improve critical features, such as ob-
ject and location detection.

• A user study investigating the efficacy of the system.

Tertiary Objectives
• An investigation of the feasibility of not having to rely on

relaying information over the network for object and loca-
tion detection.

CONTEXT SURVEY
A review of AR and Wiki projects, similar to StAR-Wiki will
be discussed in this section. The key features of the systems
and how they work will be summarised, along with any limi-
tations.

FourSquare
Foursquare [6] is an app used to share and save places users
visit. It provides recommendations and deals for restaurants,
shopping and other entertainment based around information
it gathers from the users and their friends activity in the app.
There are over 45 million users worldwide, across the web,
Android, iOS and many other platforms, and there have been
over 5 billion check-ins to places, as of January 2014. While
Foursquare is not an AR system, it is a very successful system
with an easy to use service that allows users to discover the
information they want by searching in categories they select.

Augment
Augmented [3] provides an AR mobile app to allow users to
visualise 3D models in real time, in their actual size and en-
vironment. Developers and businesses can design 3D models

on the Augment website, which can then be downloaded to
devices for offline use. They provide a universal tracking im-
age, or provide instructions on creating custom designs, that
can be printed and tracked by the device to display the 3D
graphics over. Alternatively, the graphics can be displayed in
a trackerless mode, where the device uses the its gyroscope
and accelerometer to keep models in their position whilst the
device moves.

Augment provides a powerful indoor AR experience, without
relying on indoor location and simply rendering graphics in
user defined locations in their environment which is tracked
by the device.

Onvert
Onvert [22] is an system that combines QR codes and AR.
Users and developers create AR graphic overlays, on the On-
vert website, along with a website link and a soundtrack. The
QR code tag is then automatically generated which the user
or developer adds to a base image to display the overlay on. If
the tag is scanned with a normal QR code scanner, the website
link is opened. If the tag is opened using the Onvert app, the
overlay is displayed on top of the base image that is tracked
by the app, and the soundtrack is played.

Outdoors Augmented Reality
Takacs et al. [28] produced an outdoor AR on mobile phones
that matches camera-phone images against a large database
of location-tagged images. They avoid network latency by
implementing the algorithm on the end device and use a state-
of-the-art image retrieval algorithm based on robust local de-
scriptors. By pruning irrelevant features, based on device lo-
cation, and compressing and incrementally updating features
stored on the device, they ensured the system was still respon-
sive to low-bandwidth wireless connections.

The system provides a very powerful outdoor AR image
recognition, but does not provide any content to the images
recognised, other than their name.

ARviewer
ARviewer [16] is an AR browser and editor which developers
can integrate into Android apps. It works outside using lat-
itude and longitude and indoors with QR-codes. It provides
basic information for locations from developers, but can also
be used to upload multimedia content associated with each lo-
cation. The content is displayed in the AR view overlaid onto
a live camera feed or in a separate list view. This system pro-
vides a full AR experience for users, but relies on content to
be provided by developers and QR codes to already be placed
indoors.

Layar
The Layar [13] app can scan printed material, such as maga-
zine articles and books, and display interactive content in the
app allowing users to connect with links to web content, share
the items on social media or purchase items with direct mo-
bile shopping. It has enabled over 64,000 publishers to create
content for the AR app, which has been downloaded over 35

3



million times across both iOS and Android. Layar is primar-
ily used in publishing, education, automotive and real estate
areas.

The system does not rely on QR codes, but rather image
recognition, of magazines and books, which it uses to track
and overlay graphics on. Layar provides an AR system that
does not relying on QR codes or indoor locations.

Wikitude
Wikitude [32] is an AR app that allows users to explore and
find new places, events and activities around where they are.
Users can also play games and scan objects for recognition.
The content is provided through a Software Development Kit
(SDK) and an online Studio which allows businesses and
users to create the content themselves. The app displays the
content in an AR view, in a map or on a list.

This system provides an all round solution to creating an
AR system, whilst avoiding QR codes and indoor locations.
However, content is only provided by developers, using the
SDK, or by users, using their online Studio. Users cannot
keep information up-to-date whilst exploring content in the
app.

REQUIREMENTS SPECIFICATION
In this dissertation, I refer to Markers in the Wiki, as the ob-
jects that store a given latitude and longitude and other infor-
mation. In the app, a Marker is the Java object used to store
the information from the Markers in the Wiki.

User Requirements
Functional User Requirements
1. The user shall be able to select subscriptions of Markers

they want to see.

2. The user shall be able to select a radius to search within
around them.

3. The user shall be able to view all Markers within the radius
they select.

4. The user shall be able to create new Markers.

5. The user shall be able to edit Markers.

6. The user shall be able to use object recognition to scan for
Marker images and see the Marker information displayed
on top.

7. The user shall be able to turn on/off flash on the camera.

8. The user shall be able to turn on/off notifications.

Non-Functional User Requirements
1. The user must be notified of new Markers around where

they are.

2. The user must be able to understand how to view a Markers
in full detail.

3. The user must be able to understand how to add and edit
Markers.

Software Requirements
Functional System Requirements
1. The system shall provide an interactive AR view to display

Markers around the user.

2. The system shall provide a way to change the radius of
Markers to search for.

3. The system shall provide a checklist of Subscriptions that
can be turned on or off which is saved on each device.

4. The system shall provide the options to toggle on/off flash
and notifications.

5. The system shall provide all forms required to create and
edit Markers.

6. The system shall provide a central storage of Markers for
the Wiki.

7. The system shall provide the ability to retrieve and send
Markers to and from the Wiki.

8. The system shall provide the ability to scan for Marker im-
ages and display information over those it can recognise.

9. The system shall provide web based tools to monitor the
Wiki usage and user activity in the app for analysis.

Non-Functional System Requirements
1. The system shall be executable on any Android device, run-

ning Android version 2.3.3 or higher.

2. The system shall maintain all Markers in the Wiki.

3. The system shall provide a scheme to ensure when no Net-
work connection is found that new Markers and edits to
Markers are applied to the server when a Network connec-
tion is found.

4. The system, whilst accessing a users location, will keep it
private.

SOFTWARE ENGINEERING PROCESS
This project is relatively small and has a seven day cycle and
is by built a single programmer. Most Software Engineering
process are designed for larger projects, with longer life cy-
cles, built by larger teams, however, some of the values are
relevant to this project.

Agile Development
An Agile development, iterative and incremental, was used to
develop this project, providing flexibility where requirements
could be altered and changed from one iteration to the next.

Extreme Programming
A selection of Extreme Programming features, relevant to the
size of this project, were applied to the system development.

Planning was carried out incrementally with weekly meet-
ings. In these meetings the features from the previous week
were presented to the project supervisor to ensure the cor-
rectness with the objectives and new features to add in the
following week were identified.

4



Building features incrementally allowed for a solid founda-
tion to be created and built upon in subsequent weeks, en-
suring the system could adapt to any technical restrictions or
limitations discovered and whilst avoiding any problems or
alterations that arose at the meetings.

Version Control (Git)
Revision controls, such as Mercurial and Git, provide tools
to permit commitments of software in small increments. This
allows for easier discovery of errors from previous versions
and more controlled experimenting with new features, where
if new changes are unsuccessful they can be reverted back to
a stable revision.

Git is a distributed revision control and source code manage-
ment which is used in GitHub, a web-based hosting service
for software development. Git promotes itself with being
quick and GitHub provides web-based tools, to easily mon-
itoring repositories, and were both therefore used with this
project to provide the best version control for managing the
software.

Testing
Due to this project creating an interactive system, it was crit-
ical to check that all features of the system behaved as ex-
pected, taking into account small edge cases. A large number
of test cases were produced in the form of validation tests.
Each test contained steps to carry out with expected outcomes
from the system. The tests were continuously run throughout
the development of the system and any differences from the
expected outcomes to actual outcomes, highlighted features
that were broken and required fixing.

A summary of the test cases with results can be found in the
Validation Tests section in the Appendix.

A Heuristic Evaluation was also carried out on this project to
test the UI of the app to ensure it met acceptable standards.
The established usability principles of interactive design [20]
used were:

1. Visibility of system status - informing users on what is
going on in the app.

2. Match between system and the real world - presenting
words in a natural and logical order in concepts familiar to
the user.

3. User control and freedom - allowing the user to move to
and from forms in the app without restrictions.

4. Consistency and standards - not confusing users by pre-
senting actions with the same meanings for different situa-
tions or actions.

5. Error prevention - presenting users with confirmation be-
fore committing actions after checking for possible prob-
lem conditions.

6. Recognition rather than recall - presenting instructions
before use of features in the app.

7. Flexibility and efficiency of use - ability for experienced
users to hide instructions once they become custom to the
system.

8. Aesthetic and minimalist design - instructions and dia-
logues should contain only the minimal and relevant infor-
mation.

9. Help users recognise, diagnose, and recover from er-
rors - error messages should be displayed in only plain
English, directly indicating the error and suggesting a fix
to the problem.

10. Help and documentation - documentation provided
should provide the necessary steps required for users to
complete specific tasks.

The heuristic evaluation test consisted of observing four eval-
uators who were exploring the app. It aimed to highlight any
features or actions users might struggle with, any violations
of the usability principles of interactive design and the overall
experience of the app.

Four evaluators were chosen because Figure 3, from ‘A Math-
ematical Model of the Finding of Usability Problems [21],
shows it is more beneficial when using three or more evalu-
ators. With more evaluators, more issues can be identified.
Four evaluators, the optimal number, provided the highest
cost-benefit ratio, after which there is diminish returns.

A summary of observed results can be found in the Heuristic
Evaluation section in the testing summary, in the Appendix.
The Evaluation and Critical Appraisal section will discuss
the results with regards to the project objectives and achieve-
ments.

ETHICS
The development of this project has provided almost no cause
for worry over any ethical issues. The app gets the users lo-
cation to set the initial location for new Markers, which can
be changed for the Markers in the app, and uses the location
to search for Markers around the user. The ID of the An-
droid device the user has is stored when Markers are added
and edited to the Database, however, this is only used to track
each device activity within the app and is not made available
to any other user on the system.

DESIGN

App Overview
Users of the app will be able to explore the world around
them, using their device to display information stored in the
central Wiki. This information will be Markers that all users
of the system can add and edit themselves, all from their de-
vices. There will be three ways in the app to discover these
Markers.

The primary method will be using the AR View. This will
provide a live feed from the camera with an overlay of icons
displaying Markers in the display window of what they can
see. This display window will be calculated by using the lo-
cation of the device, gathered from the device Network or

5



GPS, the radius around the device to search in and the pitch,
roll and azimuth, using the device accelerometer.

The second method will be in the Map View, which takes the
Markers in the AR View and puts them on a map the user can
explore, showing the locations of the Markers in their exact
locations.

The third method will be using the Explore Mode. Every
Marker in the Wiki will be uploaded with an image, and pro-
viding this image contains enough detail, the live feed from
the camera will be scanned to try and recognise any of these
images. If an image is recognised, a display will be shown on
top of the live feed.

Operating System
I made a choice between Apple’s iOS or Google’s Android
mobile and tablet Operating System (OS) to ensure all sys-
tem features were possible to implement. Even though Apple
offer a high-end collection of development tools, they restrict
developers access to the OS. On the other hand, Android uses
an open-source nature which allows for much more control
over the OS and therefore access to all required devices fea-
tures.

Android provides a wider user base, covering more devices,
with 51.8% of the top smartphone users, compared to 40.6%
who use iOS on Apple iPhones and iPads [5], in the U.S.

iOS apps are developed in Objective C [2], whereas Android
apps are developed in the Java programming language, us-
ing the Android Software Development Kit (SDK). Both OSs
provide C and C++ compilers for use with native code, al-
lowing the reuse C and C++ libraries. [8]. The ability to use
multiple programming languages allows for a more extensive
code base which can utilised to get more features into the app.

Memory management is taken care of in Android Java,
with Android’s Dalvik virtual machine that performs routine
garbage collection. [10] However, Objective C requires de-
velopers to manage the memory themselves, which can make
programming more complex.

Extreme programming principles explains that taking the eas-
iest option promotes faster development. Therefore, the se-
lection of using Android provides better access to the OS and
easier programming, making it the most suitable choice for
this project.

Wiki
Having reviewed the apps explored in the Context Survey,
all appear to store the same core information for a Marker.
Therefore, the Wiki needs to store the core information for
Markers:

• Name - display what the Marker is.

• Description - more detail about the Marker or add notes
about it.

• Location - latitude, longitude and altitude.

• Image - display the Marker from any other location.

Users will be able subscribe to different categories of Mark-
ers, to ensure they only explore Markers they are interested in.
Wikipedia contains a wealth of information about the world,
where each entry is allocated one or more categories. Though
the Wiki required for this project does not need to be as in
depth, the subscriptions for Markers will follow some of the
main categories Wikipedia [31] uses.

A subset of these subscriptions will be stored with the Mark-
ers in the Wiki:

• Arts

• Books

• Culture

• Education

• Entertainment

• Food and Drink

• Games

• Health and Fitness

• Nature

• People

• Places

• Politics

• Religion

• Science

• Shopping

• Sport

• Technology

• Toys

Marker Hierarchy
There are many situations where the location of one Marker
may house many more possible Markers. For example, if an
Art gallery was added as a Marker, users can discover it when
walking around or on a map, but only see a summary of in-
formation about the gallery. However, the gallery itself may
contain many paintings and other art pieces which can have
their own Markers storing more information about the pieces.
When walking around the gallery it would be useful to be able
to explore just the Markers relating to the gallery.

However, if all Markers are added as individuals to the Wiki,
when exploring in the AR View or Map View, the screen will
be too clustered with Markers. To provide a less clustered
screen, and an easy way to view only those relating to one
main Marker, a simple two level hierarchy will be used.

The user will be able to make a Marker a Master, the top
level, meaning it either denotes a place, like an Art gallery or
museum, which can have a set of second level Markers added

6



to it. Keeping the hierarchy simple ensures users do not get
confused when creating Markers.

This two level hierarchy provides a way for users to explore
a place, and use object recognition to scan for any images
inside that place. For example, art pieces can be recognised
and information about them can be displayed as an overlay.

Marker Information
The type of information associated to Markers can extend just
a name, description and image. Take for example a. It has
opening times and items within it that have prices or objects
with a functioning state. To enable this system to be live,
up-to-date and interactive, requires the information to match.
Markers need to be dynamic so they can store an object’s cur-
rent functioning state, that may suddenly break or be fixed or
a place’s opening times, that may change due to other related
events. Therefore, Markers will be stored with the options for
users to add a schedule and status.

In situations where the Wiki cannot store all the useful infor-
mation for a Marker, the user will be able to set a link to a
web page, containing more information, with the Marker.

Database
Every user will have access to one central Wiki that stores
Marker records. Therefore, a DB will be used to provide this
service. Figure 2 shows the simple DB relationship diagram
required to store such a Wiki as described in the previous sec-
tion.

Figure 2. Wiki DB

Server
A simple server is required to send new Markers and updates
to Markers, and to query for Markers around a user.

User Interface
There are three main principles or User Interface (UI) De-
sign [18]:

• Organise - produce a simple and persistent conceptual
structure.
Following existing platform conventions across the UI, us-
ing spatial layouts with grid structure, standardised screen
layouts and grouping common UI elements.

• Economise - maximise the effectiveness of the smallest set
of cues needed.
Using only essential controls produces a less clustered
screen, which allows users to find relevant controls easily,
whilst also not overly attracting the user’s attention.

• Communicate - match the presentation to the capabilities
of the user.
Designing individual characters or symbols allowing users
to easily notice and distinguish different UI elements. Keep
the number of typefaces to a minimum when displaying
different types of information. Using colour to group re-
lated UI elements and a consistent colour for screen dis-
plays.

These principles, along with the practices of Extreme Pro-
gramming, focus on keeping the UI as simple as possible.
Therefore, there will be a simple colour scheme that will re-
main constant throughout the app. Each type of UI element,
such as buttons, text boxes, check buttons and labels will ap-
pear with the constant shapes, colours and fonts. All elements
will be large enough to ensure no inadvertent touches on other
elements.

App Flow
Figure 3 shows a simple overview of the app activity flow.
The AR View will be the center of the app with access to all
other activities, to add or edit Markers and switch to the Map
View and Explore Mode.

Figure 3. An overview of the app flow

AR View
Figure 4 shows a simple sketch of the main AR View. It will
contain a live feed from the camera, along with a radar in the
corner of the view, with dots representing Markers around the
user, and icons overlaying the camera feed showing Markers
in the current view window. The menu will provide options to
change subscriptions, the radius to search for Markers within
and links to other views.

This view will provide users the ability to view Markers in
various levels of detail. The basic icon will display roughly
where the Marker is, without any information of what it is.
The icon can be expanded to show the name, distance away
and a description of the Marker, whilst still in the AR View.
This description can then be expanded to show the full details
of the Marker in a full screen view. Providing multiple lev-
els of detail will allow users to spend more time discovering
Markers they have more interest in. The user will also be able
to open the Marker for editing from this view.

7



Figure 4. AR View Design

Map View
This will display the map, initially centered to the location
of the user, with icons overlayed of Markers at their exact
locations. Similarly to the AR View, the icons show no in-
formation other than their location, however, when expanded
will show a full screen display with all the information of the
Marker. Just like the AR View, the user will also be able to
open the Marker for editing from this view.

Explore Mode
The live camera feed will be scanned to recognise images
of Markers. Once an image has been recognised, it will be
tracked by the device that will display an overlay with some
information about the Marker. This can be expanded to show
the full display with all the information about the Marker and
also provide users the ability to open the Marker for editing.

Add/Edit Form
To keep the app simple, the creation and editing of Mark-
ers will take place in the same form but with subtle, yet
noticeable, differences. The layout will take a grid forma-
tion, as seen in Figure 17. When editing a Marker, the title
will change to display “Edit StAR and the create button will
change to say “Apply. This will ensure the user is always
aware of their action on the content being manipulated.

To select a Marker to add to, a separate form will be made.
It will contain two views that can be accessed via tabs. One
tab will display the same map from the Map View, with all
Markers around the user. The other tab will display a list of
the Markers, with their name, distance away and a thumbnail
of the Markers image. Figure 18 shows a rough drawing with
the layout of the list tab.

Full Marker Display
The full marker display will take a similar form to the
Add/Edit form, but will display the information instead of
displaying buttons or checkboxes used to add or edit infor-
mation. Also included in this, for Master Markers, will be a
tabbed view, with a map and list, of all the Markers that have
been added to it. These differences will be enough to ensure
users do not confuse this form with the Add/Edit forms.

IMPLEMENTATION

Development Software
The open-source software, Eclipse [30], is used to build ap-
plications using a large set of comprehensive frameworks and

tools, that manage software for the duration of its lifecycle.
The Android Development Tools (ADT) [7] is a plugin for
Eclipse, designed to provide a robust environment to develop
Android applications. Eclipse, with the ADT plugin was used
to develop the app for this project.

AR Frameworks
There were many frameworks that provide AR support, such
as AndAR [1], but these relied on QR codes. There were
fewer frameworks providing an easy base for Marker data
structures and gathering Marker information from a server.

ARviewer [15], while not relying on QR codes, only pro-
vided a service to invoke their own app with a layer of Mark-
ers. Whereas, the android-augmented-reality-framework
(AARF) [12] provided an extensive Marker data structure
along with the ability to send requests to multiple servers, to
retrieve Markers, all in one application. The code it provided
could be heavily altered and extended to allow for complete
customisability and was therefore chosen as the base for this
app.

Qualcomms Vuforia platform, supported on iOS, Android
and Unity 3D, provides an SDK with technical resources for
computer vision-based image recognition along with a large
set of features and capabilities. Along with offering the use
of a Cloud DB to store up to one million images, it can recog-
nise any of those images on the phone at run-time, even in
low light or when the image is partially covered. [25] This
platform was used in the app to store images of the Marker to
be recognised whilst exploring.

App Framework
At the base of the framework was the Marker object structure,
storing the name, description, image and all the other main
attributes. Extending the Marker object was the IconMarker,
which added an icon to be displayed in the AR View. For this
app, IconMarker was extended further to create the StAR-
Marker object, to store all the other information required, in-
cluding the schedule, status history and the Marker added to
or a list of Sub-Markers. The schedule contained a list of
schedule events, with a name, description, start and end times.
The status history contained a list of previous states: working,
not working, known fault, unknown fault, being fixed, unas-
signed.

App Flow
Figure 5 shows the app flow between all forms in the app.
The AR View was the central form, providing access to all
other forms. The menu provided access to the Map View and
Explore Mode, the tag button opened the create Marker form.
Long holding Markers in the AR View allowed users to open
the Marker for editing, and tapping on the Markers, expand-
ing them through the different levels of information eventu-
ally took users to their full display.

AR View
AARF provided a main AR View screen with a radar, show-
ing dots where the Markers around the user were, a slider, to
easily change the radius to search within, and a tag button, to

8



Figure 5. The app form flow diagram

take a photo and take the user to the add Marker form. Only
Markers that were Masters were displayed and the icon used
was a star to represent the StAR-Wiki. Figure 6 shows how
this view appeared to the user.

Figure 6. The AR View with a Marker icon displayed

When the user clicked on a Marker, it opened a simple de-
scription for the Marker, seen in Figure 7.

Figure 7. The AR View with a Markers basic description displayed

Clicking on this description opened the Marker to its Full
Marker display, described in the Full Marker View section.

This view worked very well when only a few Markers ap-
peared, that were spread out around the user. However, when
Markers were located very close together, the screen dis-
played icons that overlapped, causing problems when a user
wanted to pick out an individual one.

To solve this problem, I created two different schemes. The
AARF continuously updated and drew the Markers on a short
time loop, meaning the solution to this problem required a

scheme that was quick to run. The first was a collision detec-
tion and the second a more complex cluster algorithm.

The first scheme detected when any two Marker displays col-
lided and moved them away from each other. It used a simple
rectangle collision detection and updated the Markers screen
locations accordingly.

The second scheme created a cluster object, making groups
of all Markers that overlapped and displayed a different icon,
to show there were multiple icons grouped together. Clicking
the icon would expand the icons within it around the center of
the cluster. However, it required a higher level of objects, en-
capsulating the Markers, to be created and tracked whenever
the device was moved, subscriptions changed and the radius
to search for updated. Some Markers within the groups were
removed, or new ones added, creating a longer delay in up-
dating, which caused the display to suffer.

Therefore, the app only applied the collision detection
scheme, which provided the most simple and quick solution,
without delaying the display update speed.

Users could also long touch a Marker to bring up a dialog with
options to edit the Marker, taking the user to the Add/Edit
Form, where the Marker information was loaded into the form
ready for editing. The other option opened Google Maps with
directions from the users current location to the location of
the Marker.

Map View
Figure 8 shows the Map View with a Marker icon displayed.

All maps used in the app were provided by the Google Maps
Android API V2, which allowed the app to display maps, ini-
tially set to a set location, with custom icons for Markers that
could be displayed at their geographical location and process
clicks on those Markers.

A button to change the type of map displayed, between a nor-
mal roads only, a satellite or a hybrid, was overlaid onto each
map in the app. This improved the searching ability for users
to find the exact location of a desired Marker.

9



Figure 8. The Map View with a Marker

Add/Edit Form
This form allowed users to create and edit Markers. It had
to provide users the ability to set the name, description, web
page link, schedule, initial functioning state (if applicable)
and if the Marker was to be a Master or added to a Master.
Figure 9 shows the form, after a photo was taken with the tag
button from the AR View.

When the user confirmed the creation or application of
changes, a progress dialog was shown whilst the app sent the
appropriate request to the server. If no network connection
was found or the task took longer than 30 seconds, the user
was notified and the information was written to a file on the
device. A background task continuously attempted to upload
the information to the server.

This solved the problem scenario when a user was exploring
Master Markers, viewing their content from the server whilst
outside with a strong mobile wireless connection, but then de-
ciding to explore a Master Marker inside a building. The con-
nection strength become too weak or stopped entirely. The
app still allowed them to make changes, which were uploaded
to the server once they regained a strong enough connection.

Schedule Form
To add a schedule to a new Marker a separate form was used.
It allowed users to create events, typing a name and descrip-
tion and selecting a day, from a list containing days of the
week and specials day, such as Christmas and New Years Day.
There were lists to select the start and end times. Figure 10
shows the form with some events added to the list. Users
could long touch an event to edit or delete it.

Add to Master Form

Figure 9. The Create Form

Adding the Marker to a Master used another form that pro-
vided users the ability to search for Markers around them on
a map or in a list, enabling users to find the Marker they de-
sired very efficiently. Figure 11 shows the form where the
Marker selected appears with a highlighted icon.

Full Marker View
This form, rather than providing text boxes and buttons to add
or edit information, provided a simple form where the infor-
mation of a Marker was displayed. If the Marker had a web
page link, the link would appear and be clickable, taking the
user to the web page. The current status for the Marker was
shown, colour coded depending on the state. For example,
if it was working, the text appeared green, whereas if it was
not working it appeared red. For Master Markers, a tabbed
view, with a map and list, showed of its Sub-Markers. A list
of schedules for the Marker was also show, for those it con-
tained.

Figure 12 shows the full Marker view displaying information
for a coffee machine. The Marker had no Markers added to
it, so the explore button was hidden.

The buttons at the bottom of the form either closed the form
or took the user to the Explore Mode, to scan for Sub-Markers
added to the Master, without relying on indoor location to find
them.

Explore Mode
Using the Cloud DB provided by Qualcomm Vuforia and the
image recognition native code, the Explore Mode was able to
scan the live camera feed to detect any image stored in the
DB. If this form was accessed from the full Marker display, a
filter was added to only scan for a list of Markers, that were
added to a Master Marker. If it was accessed from the AR

10



Figure 10. The Schedule Form

View, no filter was used, and it scanned for any image in the
DB within the radius set in the AR View.

One issue this project tried to explore was how to better AR
systems whilst indoors, where precise locations are difficult
to attain. Using the full Marker display, with the list and map
of Sub-Markers, and the Explore Mode, scanning the envi-
ronment around the user, there was no need to rely on indoor
location.

The camera feed was scanned, with points of detail in the
feed being displayed, as seen in Figure 13. Provided the im-
ages used for the Markers had enough detail, they could be
recognised.

Once an image was recognised, a bitmap overlay, made from
a summary of the Marker information, was displayed over
the object recognised, as seen in Figure 14, which was then
tracked by the device as it moved. If the object became un-
trackable, out of the camera view or from a difficult angle, the
overlay was then viewed directly to the middle of the screen,
as seen in Figure 15.

Notifications
Another way to ensure users discovered Markers around them
was to continuously search for Markers they might be inter-
ested in as they walked around not using the app.

This was done by creating a background Android Service,
that tracked the users location (keeping it private), and
queried the Wiki for Markers within a 500 metre radius that
had a subscription that matched one of the users selected sub-
scriptions. Only Markers not added to the Wiki by the user
and Markers not previously discovered using the Service were
searched for.

Figure 11. The Add to Master Form in its map tab

Once a new Marker was found, a notification was sent to
the device with the name and distance away. When the user
clicked on the notification it opened the Marker in the full
Marker display, so it could then be explored.

Notifications were only displayed once every 30 minutes to
ensure they did not receive too many.

Instructions
Instructions were added using the MrTips 2-Class [29] li-
brary, making sure users could quickly and easily understand
how to use the app. The library provided a quick way to add
instructions to be displayed when forms opened. The user
had to check a box in order not to see them again.

Figure 16 shows an example instruction in the AR View, with
notes on how to use the form.

Database
MySQL [23] provided a well supported DB to store the Wiki
information. Figure 19 in the Appendix shows the entity-
relations diagram for the DB used.

Each Marker had a core set of attributes, a name, location,
image, description and web link. The status history, schedule
events and subscriptions were stored in separate tables. This
made it easy to add extra information to the Marker.

The edits and logging tables will be discussed in the System
Analysis section.

Server
To connect the app to the Wiki DB, PHP files were created.
The app made HTTP POST and GET requests to these PHP
files to send and retrieve Wiki information. SQL injection

11



Figure 12. The full Marker display, showing the information for a coffee
machine in an office.

was used to ensure the system remained secure throughout its
usage.

System Analysis
To analyse the system usage, Markers were stored with times-
tamps of when they were added and edited. When a Marker
was edited, a record with the Marker name, timestamp and de-
vice ID was added to the Edits table in the DB. These records
allowed the system to track the number of times Markers from
different subscriptions were created and edited. Device IDs
were also stored with the Marker records to track the number
of Markers created and edited from each user.

Along with this, to fully analyse the app, user activity was
logged in the app. For example, the time spent in the AR

Figure 13. Scanning an image for points of detail

Figure 14. Overlay of Marker information

Figure 15. Scanning an image for points of detail

View, Map View and Explore Mode were logged, to find out
which view users spent most of their time in. Time spent
adding and editing specific information of Markers was also
logged to discover what type of information users tended to
provide and keep up-to-date.

Together with the time spent in the different areas of the app,
counts of many actions were stored to ensure the average time
spent in these different areas could be calculated. Every time
the app was started, a session ID was created, representing the
number of times the users had used the app. The session ID
was assigned to each record in the logging tables allowing for
a comparison between different user sessions. An example of
the counts tracked by the system included:

• Number of times changing the subscriptions.

• Number of clicks on Markers in the AR View.

• Number of clicks on the web link from a Marker.

• Number of Markers created and edited.

When there was no network connection, the system wrote the
log events to a local file and continuously ran a background
task to try to upload them. This ensured no logging informa-
tion was lost.

Analysis Tools
A web page was made to track the usage of the system. The
home page displayed the total number of users, the number
of Markers created and edited.

Another page showed a chart, shown in Figure 20 in the Ap-
pendix, of the number of Markers created and edited for each
type of subscription. This enabled an easy comparison of ex-
actly what types of Markers users tended to create and edit.

On another page, using the Google Maps API, a map of the
entire Wiki, displaying icons for all Markers was used to give
an overall usage of the system. Figure 21, in the Appendix,

12



Figure 16. Instructions being displayed in the AR View.

shows a screenshot of this page. When clicking an icon, it
displayed the name, description, image, date added, and web
link, if the Marker had one.

The final page provided a list of device IDs to select from
which showed the activity of the device in the app.

EVALUATION AND CRITICAL APPRAISAL

Objectives
• Primary: All completed, though with only a short inves-

tigation of how to best leverage multiple sensors. Whilst
outdoors, locations could only be attained by GPS or net-
works, either Wifi or mobile Internet, therefore creating
very limited leverage between them. Indoors, the project
attempted to not rely on location tracking, but instead in-
vestigate object recognition to provide an AR experience.

• Secondary: All completed. The system used image recog-
nition, provided by Qualcomms Vuforia, in the Explore
Mode. Due to the time limit of the project, there was no
time for a full user study, though the system does provide
the logging of user activity so a full user test can be car-
ried out at a later date. Instead, within the time limits of
the project, validation and heuristic evaluation tests were
carried out to ensure the system worked as expected.

• Tertiary: All completed. Using the Qualcomm Vuforia
SDK allowed image recognition from images in a Cloud
DB. The DB, that can store over one million images, stored
all images for Markers in the Wiki and produced very quick
recognition results over a network. The SDK provided
functionality for image recognition from images stored lo-
cally on the device, however, it is designed for use with a
small number of images. In order to integrate local image

recognition with this system, all Marker images in the Wiki
would have to be stored locally on the device, which would
require a vast amount of memory.

Testing
Validation
To assess the correctness of the system, I conducted tests us-
ing a script with tasks to carry out. Each test had desired re-
sults which could be compared against the actual results seen
when running the tests. The tests evaluated all the main fea-
tures, including smaller edge cases, of the system and showed
that all functional and nonfunctional requirements were met.
A sample of the tests can be seen in the Validation Tests sec-
tion in the Appendix.

Heuristic Evaluation
The heuristic evaluation was carried out on four evaluators,
providing the highest cost-benefit ratio. With more evalu-
ators, more issues can be identified. However, after four
evaluators, there are diminishing returns, as seen in Figure
3, from ‘A Mathematical Model of the Finding of Usability
Problems [21].

The test involved observing the evaluators using the app. The
tests aimed to discover any violations of the usability prin-
ciples of interactive design [20] and the overall experience
users had with the app.

The results from the tests can be seen in the Heuristic Evalu-
ation section in the Appendix. The results produced a list of
violations of the usability principles of interactive design.

One violation occurred when users were adding schedule
events. They were able to press the done button whilst in
the middle of creating or editing an event, without a confir-
mation to cancel the creation, taking them out of the form and
losing the event. To solve this, a confirmation dialog was put
in whenever the done button is pressed, to check if the user is
done adding/editing events.

Some of the evaluators noticed that the tips displayed in the
app were not present in some areas of the app which they
initially struggled to use. Noticeably when creating or adding
schedule events or when they can long press a Marker icon.
The solution was to add extra instructions and tips to cover
the smaller features of the app.

When selecting a Marker to add to in the app, some of the
evaluators noticed that once a Marker had been selected, all
icons remained the same in the map. This meant they did not
know which had just been selected. The solution to this was
to highlight the selected Marker icon in the map by changing
its colour.

In the Explore Mode, when it could not initialise the im-
age recognition, most likely from a weak Internet connec-
tion, it displayed an error message stating, “Failed to INIT
Qualcomm RECO”. The evaluators were confused, to fix this
problem, the message changed to explain the problem, why it
most likely happened and to try using the service later.

The main problem evaluators had came when they wanted
to edit a Marker. Once viewing a Marker in its full display,

13



users had to back out of the display and apply another action
to open the Marker for editing. The solution to this problem
was to add an edit button in the full Marker display, taking
users directly to the edit form.

User Study
A user study would enable a full investigation of the system.
However, as there is no content in the system, with users pro-
viding it all themselves, it is very difficult to run a short study.
The system would need to be used regularly, by a large num-
ber of users, who would provide the content. When the Wiki
contains a lot of information, users will be able to discover
more information and data about their usage with the infor-
mation can be gathered through logging their activity in the
app.

Although I did not carry out a full study, the app is prepared
for the study, as it logs all activity from each user, storing
it in a central DB for analysis. The web tools provided the
interface to select a device ID to view an anonymous users
app activity. It displayed live information from the device,
such as the amount of time spent in various areas of the app
and how many Markers were created, edited and visited.

By storing the amount of time spent in certain areas of the
app, an evaluation on what information in Markers provide
the most useful to users and which AR delivery method works
best can be carried out.

Comparison to Related Work
This project created an AR system, where content was stored
in a central Wiki, available to all users, and overlaid onto a
live camera stream of the real world. Wikitude and Layar
provide very similar systems, where Wikitude focuses on the
Wiki of information provided to users, and Layar focusing on
overlaying graphics onto real world objects.

However, content in Wikitude is created from developers us-
ing the Wikitude SDK and content for Layar is provided by
developers or businesses using web based tools. This project
relied on all content to be created by users on the end devices.

AndAR relies on QR codes to track target objects when over-
laying graphics. This project overlays graphics in a similar
manner, but by tracking real world objects that have had im-
ages taken and stored in a Cloud DB.

CONCLUSIONS

Achievements
All objectives were completed, producing a fully functioning
mobile AR system, with image recognition for use indoors
and outdoors, where all information is provided by users en-
tirely on end devices. It allows users to tag objects or places,
stored in a central Wiki, which all users of the system have ac-
cess to, who can then update information, ensuring the Wiki
contains up-to-date information.

The main goal of the project changed from investigating lo-
cation service technologies, to investigating whether an AR
system where all information is provided by users entirely
from their devices and an alternative method for indoor AR,

using image recognition rather than QR codes, provided a us-
able and effective AR experience for users.

The new goal enabled this project to deliver a different AR
system to those seen previously. However, due to the time
limitations, it is not known if this system provides users with
an improved experience.

Future Work
To build the Wiki information, to the point where a full analy-
sis of the system can be carried out, will require the app to be
released on the Google Play Store. Then users all around the
world can experience and build the content for the system.
Receiving comments from these users about what informa-
tion they find useful, and what they would like to add, may
provide a better understanding of what users find more inter-
esting and useful.

The information given to Markers can greatly extend a web
link and schedule. For example, Markers could represent
items users could purchase, attaching a price to them. Mark-
ers can also represent places, such as restaurants and cafes,
which could be associated with a menu. Multimedia is often
attached to objects in the real world, as seen in many current
AR systems, like Layar, that provides videos to magazine ar-
ticles and books.

Users want to discover new information in the environment
around them, with ability to access specific information about
the places or objects they find. To expand the Wiki, I could
add these attributes to Markers. Alternatively, users could be
given a base Marker framework, with a location and name,
and be given the ability to form their own type of Marker,
all whilst using the app. This would provide users with the
freedom to make Markers with the information they want.

REFERENCES
1. AndAR. Andar - android augmented reality.

https://code.google.com/p/andar/.

2. Apple Inc. Develop apps for ios.
https://developer.apple.com/technologies/ios/.

3. Augment. Augment is an augmented reality app.
http://augmentedev.com/.

4. Azuma, R. T. A Survey of Augmented Reality. Presence
6 (1997), 355–385.

5. ComScore. Comscore reports september 2013 U.S.
smartphone subscriber market share.
http://www.comscore.com/Insights/Press_
Releases/2013/11/comScore_Reports_September_
2013_U.S._Smartphone_Subscriber_Market_Share.

6. Foursquare. About foursquare.
https://foursquare.com/about/.

7. Google. Adt plugin. http://developer.android.com/
tools/sdk/eclipse-adt.html/.

8. Google. Android ndk. http://developer.android.
com/tools/sdk/ndk/index.html.

14

https://code.google.com/p/andar/
https://developer.apple.com/technologies/ios/
http://augmentedev.com/
http://www.comscore.com/Insights/Press_Releases/2013/11/comScore_Reports_September_2013_U.S._Smartphone_Subscriber_Market_Share
http://www.comscore.com/Insights/Press_Releases/2013/11/comScore_Reports_September_2013_U.S._Smartphone_Subscriber_Market_Share
http://www.comscore.com/Insights/Press_Releases/2013/11/comScore_Reports_September_2013_U.S._Smartphone_Subscriber_Market_Share
https://foursquare.com/about/
http://developer.android.com/tools/sdk/eclipse-adt.html/
http://developer.android.com/tools/sdk/eclipse-adt.html/
http://developer.android.com/tools/sdk/ndk/index.html
http://developer.android.com/tools/sdk/ndk/index.html


9. Google. Google glass.
http://www.google.co.uk/glass/start/.

10. Google. Managing your app’s memory.
http://developer.android.com/training/articles/
memory.html.

11. Höllerer, T., and Feiner, S. Mobile augmented reality.
Telegeoinformatics: Location-Based Computing and
Services. Taylor and Francis Books Ltd., London, UK
(2004).

12. Justin Wetherell. android-augmented-reality-framework.
https://code.google.com/p/
android-augment-reality-framework/.

13. Layar. Layar - augmented reality.
http://www.wikitude.com/.

14. Li, F., Zhao, C., Ding, G., Gong, J., Liu, C., and Zhao, F.
A reliable and accurate indoor localization method using
phone inertial sensors.

15. LibreGeoSocial. Arviewer sdk.
http://www.libregeosocial.org/node/24.

16. LibreGeoSocial. Libregeosocial: Augmented reality
floss. http://www.libregeosocial.org/.

17. Mackay, W. E. Augmented reality: Linking real and
virtual worlds a new paradigm for interacting with
computers, 1998.

18. Marcus, A. Human-computer interaction. In Readings in
Human-Computer Interaction: Toward the Year 2000,
R. M. Baecker, J. Grudin, W. A. S. Buxton, and
S. Greenberg, Eds. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1995, ch. Principles of
Effective Visual Communication for Graphical User
Interface Design, 425–441.

19. Milgram, P., Takemura, H., Utsumi, A., and Kishino, F.
Augmented reality: A class of displays on the
reality-virtuality continuum (1994). 282–292.

20. Nielsen, J. Heuristic evaluation. http://www.nngroup.
com/articles/ten-usability-heuristics/, 1995.

21. Nielsen, J., and Landauer, T. K. A mathematical model
of the finding of usability problems. In Proceedings of
the INTERACT ’93 and CHI ’93 Conference on Human
Factors in Computing Systems, CHI ’93, ACM (New
York, NY, USA, 1993), 206–213.

22. Onvert. Overt - more than you see.
http://onvert.com/.

23. Oracle. Mysql. http://www.mysql.com/.

24. Papert, S. Mindstorms: Children, Computers, and
Powerful Ideas. Basic Books, Inc., New York, NY, USA,
1980.

25. Qualcomm. Qualcomm vuforia. http:
//www.qualcomm.com/solutions/augmented-reality.

26. Stephen Cawood, Mark Fiala. Augmented reality - a
practical guide. Programatic Bookshelf (2007), 1–3.

27. Study Tour Pixel - University of Twente. Toward the
indoor use of location-based augmented reality.

28. Takacs, G., Xiong, Y., Grzeszczuk, R., Chandrasekhar,
V., chao Chen, W., Pulli, K., Gelfand, N., Bismpigiannis,
T., and Girod, B. Outdoors augmented reality on mobile
phone using loxel-based visual feature organization. In
In Proceeding of ACM international conference on
Multimedia Information Retrieval (2008), 427–434.

29. Tezan Enssat. Mrtips library.
https://github.com/lethargicpanda/mrtips.

30. The Eclipse Foundation. Eclipse home.
http://www.eclipse.org/.

31. Wikipedia. Portal:contents/catergories.
http://en.wikipedia.org/wiki/Portal:
Contents/Categories.

32. Wikitude. Wikitude - the app.
http://www.wikitude.com/.

33. Yoon, H., Park, N., Lee, W., Jang, Y., and Woo, W. QR
code data representation for mobile augmented reality.
The International AR Standards Meeting (2011), 17–19.

15

http://www.google.co.uk/glass/start/
http://developer.android.com/training/articles/memory.html
http://developer.android.com/training/articles/memory.html
https://code.google.com/p/android-augment-reality-framework/
https://code.google.com/p/android-augment-reality-framework/
http://www.wikitude.com/
http://www.libregeosocial.org/node/24
http://www.libregeosocial.org/
http://www.nngroup.com/articles/ten-usability-heuristics/
http://www.nngroup.com/articles/ten-usability-heuristics/
http://onvert.com/
http://www.mysql.com/
http://www.qualcomm.com/solutions/augmented-reality
http://www.qualcomm.com/solutions/augmented-reality
https://github.com/lethargicpanda/mrtips
http://www.eclipse.org/
http://en.wikipedia.org/wiki/Portal:Contents/Categories
http://en.wikipedia.org/wiki/Portal:Contents/Categories
http://www.wikitude.com/


APPENDIX

TESTING SUMMARY
This section presents the test results carried out in this project.

Validation Tests
A script containing a list of system validation tests was carried out during the development of this project. The system was
interactive, with the main features providing visual feedback on the device, which is difficult to write unit testing for. Instead,
the script had interactive test cases, including many edge cases, checking the features of the app against desired results. Only a
sample of the tests are given below, due to the large number of test cases required for the whole system.

Add a Marker
Steps:

• Connect the device to the internet.
• Press the Tag button to take a photo of the Marker.
• Fill in the Create StAR form with a name and subscriptions
• Make the Marker a Master or add it to a Master

Desired Result: A progress dialog should show, whilst the Marker is sent to the server. Once complete, a dialog is displayed
showing the Marker has been successfully added. The Marker should be visible in the AR View and Map View within 30 seconds
and in Explore Mode in about 5 minutes.
Actual Result: Progress display shown, after which a message about the Marker being created was shown. The Marker became
discoverable in the app within 30 seconds.
Pass/Fail: Pass

Change Subscriptions
Steps:

• Open the app into the AR View
• Turn on all subscriptions
• Add a Marker with a single subscription
• Once the Marker has loaded in the AR View
• Uncheck the subscription for the Marker
• Recheck the subscription for the Marker

Desired Result: The Marker should become invisible in the app when the subscription is unchecked and reappear when
rechecked.
Actual Result: Marker disappeared and reappeared as expected.
Pass/Fail: Pass

Full Marker Display
Steps:

• Open the app to the AR View
• Find a Marker in the form
• Click the Marker to bring up its description still in the AR View
• Click the description to bring up the full Marker display

Desired Result: All the Marker information should be displayed in the full Marker display form.
Actual Result: All information was displayed in the form correctly.
Pass/Fail: Pass

Edit Marker
Steps:

• Open the add to the AR View or Map View
• Find a Marker in the form

16



• Long hold the Marker to bring up an options dialog
• Select the edit option
• Edit some information with the Marker
• Apply the changes
• Wait for the updated Marker to be sent to the server
• View the Marker in full detail

Desired Result: The Marker detail should have changed from the original information, seen in the edit form, to the new
information seen in the full Marker display.
Actual Result: All information is seen to change, including the name, description, link, schedule, location.
Pass/Fail: Pass

Sub Markers
Steps:

• Create a Master Marker and add another Marker to that Master
• Open the Master Marker in the full display

Desired Result: The Marker added to the Master Marker being viewed in full should display a map and list containing the sub
Marker.
Actual Result: The Marker is in the list and on the map.
Pass/Fail: Pass

Explore Mode
Steps:

• Create a Marker and wait for 5 minutes (for the image to be uploaded to the Cloud DB)
• Scan the original object(s) used for the Marker image

Desired Result: An overlay with the Marker name and description should be displayed over the object(s) and tracked by the
app. When moving completely away from the object(s) the overlay should move and stay in the centre of the screen.
Actual Result: The overlay is displayed and tracked by the app.
Pass/Fail: Pass

17



Heuristic Evaluation
This section will summarise the results from observing the four evaluators whilst they used the app, referring to the usability
principles of interactive design.

Principle: Error Prevention

When adding a schedule event for a Marker, pressing the done button took the app back to the create/edit form without
checking if the user wanted to add the event being created. This lost the event.

Principle: Recognition rather than recall

Instructions were not present in all areas of the app. This meant some users to struggled to understand how to perform
certain actions, for example when adding or creating schedule events and when to long press a Marker icon in the Map View.

Principle: Visibility of system status

When selecting a Marker to add to when creating or editing a Marker, all Marker icons in the map appeared the same
colour, even after one had been selected.

Principle: Help users recognise, diagnose, and recover from errors

While in Explore Mode, when the app could not initialise the image recognition, error messages were not explained in
plain English, confusing users. The solution was to change these messages to directly indicate the error and suggest a fix for the
problem.

Principle: User control and freedom

Users were frustrated that when they viewed a Marker in its full display, they had to back out of the full display and ap-
ply another action in order to open the Marker for editing. This restricted users freedom within the app.

18



ADD/EDIT MARKER DESIGN

Figure 17. Design for the Add/Edit form

19



ADD TO MASTER DESIGN

Figure 18. Design for the Add to Master form

20



DATABASE ENTITY-RELATIONS DIAGRAM

Figure 19. The entity-relationship (ER) diagram used to store the Wiki Markers and log user activity.

21



SYSTEM TOOL SCREENSHOTS

Figure 20. The web tools, showing the number of Markers added and edited for each subscription.

Figure 21. The web tools, showing the entire Wiki of Markers in the world.

22



SOFTWARE LISTING
• The app code can be found in the ”StAR-Wiki” directory
• The Android application package file (APK) file, used to distribute and install the app can be found in the ”APK” directory
• The server code can be found in the ”Server” directory
• The web analysis tools can be found in the ”Analysis Tools” directory

23


	Declaration
	Introduction
	Augmented Reality
	StAR-Wiki

	Objectives
	Primary Objectives
	Secondary Objectives
	Tertiary Objectives

	Context Survey
	FourSquare
	Augment
	Onvert
	Outdoors Augmented Reality
	ARviewer
	Layar
	Wikitude

	Requirements Specification
	User Requirements
	Functional User Requirements
	Non-Functional User Requirements

	Software Requirements
	Functional System Requirements
	Non-Functional System Requirements


	Software Engineering Process
	Agile Development
	Extreme Programming

	Version Control (Git)
	Testing

	Ethics
	Design
	App Overview
	Operating System
	Wiki
	Marker Hierarchy
	Marker Information
	Database

	Server
	User Interface
	App Flow
	AR View
	Map View
	Explore Mode
	Add/Edit Form
	Full Marker Display

	Implementation
	Development Software
	AR Frameworks
	App Framework
	App Flow
	AR View
	Map View
	Add/Edit Form
	Schedule Form
	Add to Master Form

	Full Marker View
	Explore Mode
	Notifications
	Instructions
	Database
	Server
	System Analysis
	Analysis Tools

	Evaluation and Critical Appraisal
	Objectives
	Testing
	Validation
	Heuristic Evaluation
	User Study
	Comparison to Related Work


	Conclusions
	Achievements
	Future Work

	REFERENCES 
	Testing Summary
	Validation Tests
	Add a Marker
	Change Subscriptions
	Full Marker Display
	Edit Marker
	Sub Markers
	Explore Mode

	Heuristic Evaluation

	Add/Edit Marker Design
	Add to Master Design
	Database Entity-Relations Diagram
	System Tool Screenshots
	Software Listing

