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Abstract

Many methods of data visualisation for debugging exist but not many are used to any good effect
and even less exist for visualising concurrency. The problem is that it is difficult to understand
concurrency interactions, especially with the methods employed currently. This project identifies
novel and intuitive ways to visualise information relating to concurrency from a range of sources
as a proof-of-concept that visualisation is a viable approach. It targets the Java platform using
both the Java Virtual Machine Tool Interface (JVMTI) and the standard Java API as data sources. A
range of visualisations are used to display the data, so that a programmer using these tools will
gain a better understanding of the threads, their states, the efficiency of the threads, information
flow within a thread pool and any liveness issues present. This approach is evaluated against
current tools that offer similar functions with the results incorporated into the initial design phases.
An iterative development approach is used to help guide the progression of the project toward
its stated objectives by utilising experience gained in previous iterations. The results show that
visualisation is a viable approach to conveying understanding to the user and many intuitive
visualisation methods exist. By leveraging thread pools, new specialised visualisation methods can
be created.
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Chapter 1

Introduction

Being able to write correctly functioning concurrent code has been a difficult task since its inception.
Many languages support advanced concurrency features to help create highly performing code
but at the cost of code complexity. Introducing concurrency drags in a new dimension that the
programmer must be aware of and although mechanisms provided in such languages are powerful,
many programmers still have difficulty leveraging this effectively. In an article by Vance Morrison
he says "Programmers are simply not accustomed to the idea that other threads might be changing
memory out...Worse when a mistake is made, the program will continue to work most of the time."
[Morrison, 2005]. There is an obvious need for tools that help programmers understand concurrency
interactions, increasing the chances that the code is functioning correctly. The aim of this project is to
see whether there are better alternative ways to make this information known to the programmer by
examining novel visualisation methods.
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Chapter 2

Objectives

2.1 Primary Objectives

• Create a tool that allows information about threads to be displayed, with a focus on thread
pools. A graphical visualisation approach will be used to show thread state information. The
information will include the state of the thread, whether it is blocked, waiting, sleeping or
running. It will be presented to the user using an intuitive graphical interface.

• The initial tool will then be extended to show information relating to locks on specific sections
of code and include functionality that highlights when threads are waiting on locks. Threads
that belong within a pool will be differentiated by threads from other pools, allowing the
interactions between the pools to be seen.

2.2 Secondary Objectives

• Extend the scope of the primary objective(s) to cover programs that do not use the Thread Pool
pattern.

• Extend the primary objective to highlight deadlock, starvation and potentially livelock situations
to the user.

2.3 Tertiary Objectives

• Evaluate the program using human subjects via surveys

• Extend user evaluation to include comparison of other visualisation tools.
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Chapter 3

Context Survey

Before starting the project, current tools and research had to be surveyed to determine the scope,
objectives and approach taken to address the problem posed in the abstract. Most of the tools are not
produced purely for concurrent programming purposes but this will be the main ability that will be
looked at. Java and C# are two of the most popular languages, this makes them ideal candidates for
profiling tools. It therefore makes sense to start the survey with the tools provided by Oracle. Higher
level languages such as these also have complicated concurrency mechanisms to address issues that
arise in multi-threaded application development.

3.1 VisualVM

The first tool that was surveyed was the VisualVM tool created by Oracle. This tool details information
about the JVM and can be either integrated with an IDE (e.g. Eclipse) or can be run as a stand-alone
binary. It contains a GUI that shows processes running within the JVM and allows the user to click
on various tabs relating to JVM information. Not only does it show local information, it also allows
remote connections to virtual machines. In addition to showing local and remote JVM’s it also
displays:

• CoreDumps

• HeapDumps

• Snapshots (Archives of data about a particular JVM process at a specific point in time).

Although VisualVM does provide some dynamic information on the threads, it only shows basic
information related to their current states and nothing on for example, where in the code the threads
are executing. It displays the thread states as a moving bar graph and uses colour to delineate the
state of the thread. In addition, the thread states are misleading as it only shows a sub-set of the
waiting and timed wait states. A thread that is sleeping is in the timed wait state but there are
alternative ways a thread could enter this state, apart from invoking sleep. Using this display makes
it difficult to spot deadlock within the threads, and more importantly, where in the code and what
threads are locked. The situation where more than one thread is blocked at any one time is highly
likely, and therefore is difficult / impossible to deduce which threads are blocked on each other
using this method.
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3. Context Survey

Figure 3.1: An example how a thread state visualiser looks like. Taken from VisualVM.

3.2 JIVE - Visualising Java in Action

This is another visualisation tool that contains information about threads, object information and
displays method call traces. It uses a samping method to take ‘snapshots‘ during the programs
execution to minimise the amount of data gathered. The trace data for the program is generated by
instrumenting the code using a special byte-code compiler. In the research paper by [Reiss, 2003a] it
is easy to see that it has a similar layout to the information shown from VisualVM, but with some
additional information on the active threads. This included whether a thread was running within a
synchronized section and information about the blocking frequency of threads. The first obvious
disadvantage to their approach is that the trace data is generated in snap-shots and so doesn’t
provide a complete picture of the dynamic nature of the program. This is especially important
when looking at threads as there is much lower probability that a change is picked up by while
sampling due to the long periods in between the sampling stages, missing out potentially important
information.

The visualisation method used is similar to the one used in the VisualVM tool except the bars were
vertical instead of horizontal. Each thread had their own window and the number of method calls
per thread was denoted by the vertical size of the bar. Estimated memory usage was shown by the
horizontal size of the bar and the thread state was denoted by the colour of the bar. Output from the
trace tool was in the form of XML documents that contained all the information for that particular
snap-shot [Reiss, 2003b]. It could either be sent over a network connection or loaded locally into the
visualiser. Because the main aim of this tool is not to give detailed information on the interaction of
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3.3. ThreadMon

the threads, they prioritised performance over in-depth information. The impact on performance
cannot be ignored completely and it would be ideal to minimise the affect on performance and this
may influence the scheduling of the threads.

Figure 3.2: Visualisation example in JIVE

In figure 3.2, the thread windows can be easily seen on the right and the smaller windows on
the left show classes that are involved in the execution of the program. The disadvantage to their
visualisation approach is that its not aesthetically pleasing despite it being relatively easy to pick
out relevant information. It also exhibits scaling issues which can begin to be seen from the figure
above, because each class has its own window, as the program grows the windows will get smaller
and it will become difficult to see the information picked up by the tool. Many of the approaches
used by this tool have been approximations e.g. counters to approximate time spent in a specific
class and exact thread information is never derived. This approach will be problematic in this project
because accuracy of the interactions is important. Any gaps in collection of data could miss vital
information about the behaviour of the threads. It is obvious to see from the result of the research
in this paper that the objectives for the project focused mainly on creating a very simple but fast
dynamic visualisation tool, with an emphasis on minimising the overhead in retrieving the trace
data. They had seen that previous work in this area that collected data more accurately had imposed
an unacceptable performance impact.

3.3 ThreadMon

ThreadMon is a dynamic analysis tool used to visualise the interactions between user-level threads
and kernel level threads. According to the paper by Cantrill & Doeppner it allows direct deduction
of any resource contention within a program and can show how the user-threads are mapped
onto kernel threads within the operating system [Cantrill and Doeppner Jr, 1997]. It is a general
program that targets the operating system thread implementations and is not targeted at specific
language platforms. Both states of the user-level thread and the kernel threads are shown allowing
the scheduling to be leveraged by the application developer. This tool is primarily targeted at gaining
thread information for the user so no information relating to stack or heap allocation is available.
Class information is also not available because it works at a lower level that the JVM and so could be
used with any language or platform. CPU utilisation is the only other information apart from the
threading information, that is shown.

7



3. Context Survey

The information is gathered from various operating system services and so could theoretically target
any language that runs on that operating system. But it will be unable to look at language specific
concurrency mechanisms such as monitors and semaphores. Information gathered by these services
is then passed to a visualiser which then draws the information in some intuitive format. From
the screen-shots it looks like the visualisation methods used are simple but show relevant useful
information for the programmer in a clear manner.

Figure 3.3: CPU Utilisation in ThreadMon.

Although this tool does not target the Java platform, their research has uncovered various other
considerations to take into account when designing a thread tool. Scalability of the tool is one of
the next goals for this research but for the purposes of this project, conversely, scalability will not
be of primary importance in this project. This is because uses of the tool will be working on small
sections of code and the overall interactions in a big system would be too massive to show inside
a single tool. Another important aspect to take account of is the thread-model used in the target
platform, Java has a one-to-one mapping between Java threads and OS threads hence the OS is
responsible for scheduling. In this instance, the JVM will map a Java thread onto a native operating
system thread and the operating system will handle the scheduling of the native threads. Other
models like many-to-one and many-to-many would normally have their own scheduling done within
the threading library as well as the scheduling of the native threads within the operating system.
Resource contention can be deduced by using the tool but the way the user threads are mapped
down restricts control of them.

3.4 YourKit Java Profiler

This is a fully-fledged profiling suite that gathers information about all aspects of an executing
program and displays them in intuitive and colourful ways. With respect to synchronisation, it
shows information relating to all currently executing threads and their states, includes a dead-lock
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3.4. YourKit Java Profiler

detector and details of a monitor lock history. The visualisation method used to display the currently
executing threads is no different to any previous method and uses a dynamic bar graph to show
each of the threads and a colour to denote which state that thread is in.

Figure 3.4: Currently executing threads in YourKit Java Profiler. Stack traces for each thread are also
displayed.

One of the unique aspects of this profiler that has not been seen in previous tools, is its ability to
record the acquisition of locks and calls to wait(). It can also record the number of times a lock has
been previously held and the time spent waiting to acquire the lock. The dead-lock mechanism is
also a distinctive trait of this program. Not only is it able to detect dead-lock but it is also able to
show the threads involved and what objects the threads are dead-locked on. This tool is different
from the rest in terms of it being a commercially available tool and not the result of research. It
encompasses a wide range of aspects not only including thread information but also memory usage
and object related information. It specifically targets the JVM but doesn’t specify how it gets its data.
It has the advantage of a large scope of data but shows most of this as statistics.

Figure 3.5: Dead-lock detection available in YourKit Java Profiler.
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3. Context Survey

3.5 JProfiler

This is similar to the Java Profiler from YourKit, it is an extensive profiling suite that provides a
lot of tools to optimise and enhance Java applications. On attaching to a JVM the user is able to
select how invasive the tool is, selecting from full instrumentation to sampling. In terms of thread
information, it provides all the information that is available in the YourKit Java Profiler but lacks
dead-lock detection. It displays the data in much the same way as the YourKit tool does and also
supports information related to locking histories and monitors. Most information relating to threads
is shown as textual trees or a simple list of recorded information. Dynamic visualisation of thread
state is done by a dynamic bar graph that correlates the bar colour to the state the thread is in,
exactly the same way as the two research tools discussed earlier.

Figure 3.6: Threading information shown in JProfiler.

The method used to display information here is used in many other tools as well and is not unique
to JProfiler.

Figure 3.7: Monitor information would normally be shown in this table here. Tabs on the side direct
to alternative information.

The various tabs seen on the left highlighted by the blue box allow information relating to locking
and monitor history to be seen. Information can either be in a textual format or drawn as a graph.
There is a lot of similarity with the YourKit tool except it lays it out in a different manner.

10



3.6. JVMMonitor

3.6 JVMMonitor

Another popular tool is actually a plug-in for the Eclipse IDE and itself, is written in Java. It is an
open-source tool that allows dynamic inspection of the JVM and any Java programs that are running.
It doesn’t offer as much information as YourKit or JProfiler and requires the use of the Eclipse IDE
where as the previous paid-for tools would easily integrate with the most popular IDE’s or would
run as a stand-alone program.

Figure 3.8: All the information relating to threads shown in the JVMMonitor tool.

Although the tool doesn’t use advanced methods to display information like in the previous tools,
it does show a lot of information within the table. Thread data such as blocked time, wait time
and CPU utilisation can be seen. A stack trace of each thread is also available in the right hand
window. Apart from this tabular format, there are no other display options for the data. The obvious
downside to this tool is that it is a plug-in and requires other software.

3.7 AppPerfect Java Profiler

This is another stand-alone program that allows analysis of the JVM and all running Java processes.
Like YourKit and JProfiler it doesn’t just focus on threads but instead displays a large amount of
information regarding the JVM, making it easier to fine-tune Java programs. It easily provides
information on thread states, all active monitors and even has deadlock detection. Much of the
information is available from previous tools and it doesn’t offer anything unique. More importantly,
it lacks visualisations for the data it collects.

Figure 3.9: List of currently active monitors shown in AppPerfect Java Profiler.
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3. Context Survey

Figure 3.10: Threads view in AppPerfect Java Profiler.

3.8 Intellij IDEA Community IDE

One of the most popular IDE platforms for Java is the Intellij IDEA from JetBrains. It offers a
comprehensive set of tools for developing in Java and a wide range of plug-ins. The standard
community version of the IDE contains a debugging suite similar to the one seen in Eclipse and
offers some information relating to concurrency, including the facility to produce a complete JVM
heap dump. With respect to threads, the user is able to view a list of running threads in real-time
including the threads state. There are currently 3 thread states that it reports, running, wait and
unknown which correspond to the underlying Java thread states. In addition to the list of threads, the
user can also select a thread and view its variables and stack frame while the program is executing.
The method used to show this information is textual and does not use any visualisation methods
[JetBrains, 2014].

Figure 3.11: Debugging interface from the IDEA Intellij Java IDE

While other IDE’s and profilers offer some sort of graphical feedback option, Intellij does not do this.
It does have a small icon to show some information about the thread such as whether the thread
is active, suspended, frozen or at a breakpoint and is the only graphical information shown in the
debugging interface. These can be seen highlighted on figure 3.11. One possible reason why there
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3.9. Eclipse IDE Java

may not be any large graphical representation of such information is to do with a lack of space to
show any visualisation. A brief look at the profiling section within the plug-in database revealed no
credible alternatives to the debugging interface regarding thread information.

3.9 Eclipse IDE Java

Arguably the most popular IDE for Java is Eclipse from the Eclipse Foundation. It provides almost
identical facilities to the IDE presented by JetBrains including a debugging suite. With respect to
information regarding concurrency there is not as much as in the Intellij IDE, the only information
in real-time is a list of currently executing threads, shown in the view seen in 3.12.

Figure 3.12: Debugging window shown in the Eclipse IDE.

Looking at the Eclipse Marketplace which is the main plug-in database for Eclipse, there is one
plug-in that offers more information on threads. Lockness is a plug-in that allows analysis of Java
thread dumps and while this technically does not allow it to monitor in real-time, it still offers
interesting information. It provides more in-depth information than the thread information provided
by the Intellij debugging suite or Eclipse. For example, in addition to the thread states shown, it
provides potential reasons as to why they’re in that state. The screen shot below shows all the
possible thread states and is taken from the online documentation of the tool [cr, 2006]. Information
on locks and waiting threads is shown in a tree format and it is also detects locks that are causing
bottlenecks. A major disadvantage to this too is that it is a static analyser but more importantly,

Figure 3.13: Showing possible thread states using the Lockness plug-in.

Eclipse, Intellij and Lockness all suffer from fundamental deficiencies in the way that they present

13



3. Context Survey

information to the user. Quite often when there is a lot of information available, presenting it
in a textual format makes it hard for the user to find the required information and the effect is
exacerbated in a dynamic environment. Combining these different sets of data into visualisations
would make digestion of the data much more manageable for the user, hence making visualisation
an interesting approach.
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Chapter 4

Requirements Envisioning

Due to the nature of the project, the amount of initial documentation is small and more dispersed
throughout the development of the tool.

4.1 Essential Use Cases

This is a high-level outline of how the user will interact with the tool and shows the general steps
after a required action is selected. The Actors in these cases are the file system, the user and either a
running or yet to be executed target Java program.

Essential Use Cases System Responsibilities
Load target program

• Select program from file system.
• Initialise tool and execute target program.

Select visualization
• Detect mouse or keyboard entry.
• Select correct visualization and request

data.
• Render visualisation onto screen.

Attach to target program
• Detect all eligible running programs.
• Attach to selected target program.
• Initialize tool.

Execute target program
• Allow search of the file system.
• Execute requested application

15



4. Requirements Envisioning

Figure 4.1: Use Case diagram.

This gives a high-level description of the typical interactions that will happen between the actors
without settings any concrete details about how this will be done. This typically will not change
throughout the development process unless further functionality is added to the system.

Figure 4.2: Domain model showing domain specific interactions.

The domain model consists of domain-specific entities, their relationships between other entities
within the overall system and the associations between the entities. It provides a high-level structural
envisioning of the system, although by no means is set in stone and is subject to change in later
development stages.
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4.1. Essential Use Cases

Figure 4.3: User interface flow diagram.

A user interface diagram specifies how the user is expected to interact with the system when it is
completed. It outlines what actions are expected to take place and the responses in terms of what
the user sees on the screen. Because this is a software debugging tool, the user interface is not a big
priority as long as it shows all the required information and it is accurate.
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Chapter 5

Software Engineering Process

The effect of the type of development methodology can be detrimental on the productivity and
quality of the produced product if the wrong one is chosen. Arguably the worst result is building a
product which is not the one that is wanted. For these reasons alone it is imperative that the right
development technique is chosen according to the project domain and the business requirements.

This project is primarily exploratory in nature and so doesn’t lend itself well to a traditional Waterfall
phase-based approach. Changes in the requirements can be sudden, the exact long-term goal is
unknown and the requirements may be ambiguous. Using a waterfall model in this situation
increases the chances of delivering the wrong product because there is little feed-back between the
stages. Testing is another stage that becomes condensed, although in this particular project, robust
bullet-proof code is not a requirement.

While the focus of using Agile techniques revolves around the ability to adapt to changes in re-
quirements, promoting development via an evolution of stages. It encourages working software
over large amounts of documentation, and collaboration with customers as opposed to negotiation
[Beck et al., 2001]. All of these aspects are much more applicable to an exploratory project such as
this one, which is why it was chosen as the as the general approach to the project. In addition to
agile, iterative & incremental design and implementation was used as the development model, which
is common when an Agile approach is adopted.

Advantages to using an iterative & incremental approach to design is that it allows for feedback
after each iteration. It also allows the chance to learn from the previous development cycle which is
particularly good in this instance because unknown API’s were being used with little to no examples.
Feed-back is extremely important in a project such as this one because it facilitates the evolution
of the project. Without feed-back, it would be difficult to decide whether the right approaches
are being used and whether the project is heading in the correct direction. After each iteration,
a working increment of the tool was created and verbal feedback was given including validation
of the increment against the requirements. Notes for these discussions were kept and used as the
basis for the next design and implementation cycle in the form of a simple to do list of high-level
functionality to be added. Another side-effect of the incremental & iterative approach is the lack
of upfront documentation regarding the design of the software, which is seen in the requirements
specification part of this report. For such a small project, no other large bits of documentation are
needed, with the source code presenting the major origin of the documentation. The first design and
implementation phase took longer than the rest due to the unfamiliarity of the of the project area
and APIs. This was probably the most important stage of all the iterations because it provided the
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5. Software Engineering Process

biggest boost in knowledge surrounding the domain. To support this development process, software
version control was used in the form of Mercurial code repositories that were provided by the school.
The Google Java code style was followed to make the Java code as clear as possible, which is largely
based on Sun’s own coding standards [Google, 2014].
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Chapter 6

Ethics

Due to the tertiary objectives that relate to the possibility of using surveys for evaluation, special care
will be needed to ensure the data stays safe. To this end, any information gained from the survey will
be anonymous and encrypted on the virtual host provided by the school. An initial pre-assessment
ethics form was completed and it was deemed that a full ethics assessment was not required.
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Chapter 7
Background

I had no prior knowledge about the JVMTI or the thread pool pattern and so this section is a bit
of background about what I’ve learnt regarding both these ideas. Both are mentioned due to their
importance towards the project.

7.1 Java Virtual Machine Tool Interface

The JVMTI is a native API that allows external programs to inspect the state of a JVM when it
is running. It also allows control over the threads and processes running within the JVM. It was
introduced as an improvement to the previous interfaces that offered similar services such as the
Java Virtual Machine Profiling Interface (JVMPI) and the Java Virtual Machine Debugging Interface
(JVMDI) which have been discontinued since SDK 1.5.0. Some of the reasons behind the removal of
the previous interfaces were because it was very invasive and therefore difficult to maintain, didn’t
scale that well and didn’t provide any error information when things failed [Prasad et al., 2004].
The JVMTI proceeds by allowing a library to be loaded into the JVM which is then able to invoke
functions. An events service is also provided by the interface that allows callback functions to be
defined in case of a particular events occurring within the JVM. For example, you can register a
callback for whenever an object is allocated, a method is called on an object or when the garbage
collector is called. It also permits the implementor to control the threads from within the JVM, create
new objects on-the-fly, invoke methods, change byte code associated with classes and even allows
the implementor to intercept JNI function invocations and re-direct them.

A range of functions are provided by the JVMTI itself but there are also functions provided by
the Java Native Interface (JNI) that can also retrieve information. JNI is the high-level interface
that allows the JVM to call and be called by native libraries and applications. It is typically how
cross-language support is implemented.The functions related to threads and thread groups allow
the retrieval of information from the JVM in a clean and quick manner. For this reason and the fact
that the JVMTI contains a great variety of capabilities, it was chosen as the approach to gain the
information.

In a typical setup, a library known as an agent is created that contains calls to the JVMTI. The JVM
has a choice whether to load the library at the same time as the JVM is started (i.e. when the Java
program is started) or it can be loaded and ‘attached‘ after the Java program has already started
execution. Once the library has been loaded the actions it takes depends on the implementations of
two functions with the following prototypes:
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7. Background

OnAttach()is invoked if the library is loaded into an already executing Java program and OnLoad() is
invoked if the library is loaded at JVM start-up. The following pseudo-code is how the library is
typically setup, regardless of when it is loaded into the JVM.

JNIEXPORT j i n t JNICALL Agent_OnAttach ( JavaVM∗ jvm , char∗ options , void∗
reserved )

{
//Get a r e f e r e n c e to the JVM − This i s how we a c c e s s JVMTI

f u n c t i o n s .
// R e g i s t e r f o r events of i n t e r e s t
// R e g i s t e r c a l l b a c k f u n c t i o n s by ass igning funct ion p o i n t e r s
//Setup a globa l monitor t h a t can be used f o r synchronizat ion
//Return

}

Because the JVMTI is a native interface, manual memory management is required to manage memory
allocated by the interface functions. For example, arrays that are returned by a JVMTI function
must be freed by a function supplied by the JVMTI. Variables that refer to Java objects and variables
within the JVM are generally local and only valid in the function that they’re returned to. References
that require a longer life time must be converted to a global reference using a JNI function. There
are advantages and disadvantages to converting them to global references, it is regarded as better
practice to, if possible, leave the references as local.

Agents can control other threads within the JVM, they are also able to create their own native threads
that are able to handle events or communication. This is useful if you want to poll for information
inside the JVM. Although the JVMTI doesn’t provide events for everything, it generates events for
integral actions inside JVM which include:

• Exceptions - Event fired whenever an exception is thrown within the JVM.

• Method Entry & Exit - Whenever a Java method is just entered and when it leaves.

• JVM state change - Fired when the JVM changes state, these include, JVM death, JVM initializ-
ation and JVM start.

• Class Loading - Whenever a class is loaded into the JVM this event is fired and enables access
to the thread loading the class and the class itself. This facilitates instrumentation.

• Monitor Wait & Waited - Fires when threads begin waiting on an object monitor and just after
a thread has finished waiting and is about to enter the monitor.

More information can be found from the JVMTI reference pages http://docs.oracle.com/javase/
6/docs/platform/jvmti/jvmti.html .

7.2 Thread Pools

The thread pool pattern is a efficient solution to a common problem. The problem is that there are a
lot of independent tasks that can be executed concurrently with each other. If a simple approach is
used where a thread is instantiated for each task at once and permitted to execute, the performance
of the machine may degrade owing to resource starvation. Another approach would be to limit the
number of threads created and just instantiate more once the previous ones have been killed. This
would also affect performance due to the high overhead of creating and destroying a thread.
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7.2. Thread Pools

A thread pool mitigates these disadvantages by creating a number of threads, normally a fixed
amount, that will execute jobs they are given and then simply sleep until another job is in the queue.
This reduces the overhead from creating lots of threads repeatedly and reduces the risk of resource
starvation. Within the thread pool there is a queue where tasks are submitted to, and the worker
threads dequeue these tasks once they are ready. If no tasks exist, the threads simply sleep until one
becomes available. Common mistakes when implementing a thread pool include not making access
to shared data structures thread-safe, thread leak, which is where references to a thread object are not
released properly preventing it from being garbage collected and lastly the re-instantiation of threads
when they are killed by the task they are executing. The complexity of these issues and commonality
of the problem is the reason why many standard libraries (Java and C#) have implementations which
allow some degree of customisation.

The disadvantage of using a library implementation is that a lot of things are hidden away under
the interface and leveraging a thread pool well, requires knowing a bit about the behaviour of what
is happening underneath. Common problems when utilizing a thread pool, include dispatching
jobs that are ‘too small‘ for the thread and not worth the overhead in creating the thread. The
biggest problem and easiest to over look is when the tasks are not independent of each other may
depend on other tasks up-or-down stream from its current position. In the worst cast this can lead
to a complete program deadlock as all the worker threads are waiting on each other. A less severe
repercussion is an IO bound task, in this case a CPU core is wasted while the thread it is executing
blocks waiting for IO. A thread pool with an adaptable number of worker threads would assist these
situations, although not without a small performance hit. In the case of the IO bound task, it can
simply be swapped with another newly created worker thread that is able to execute while the other
is blocked, and then switch the original back in once its finished waiting on IO. This does however
enforce the need for the pool to ‘know‘ when a worker thread has blocked on IO which may be
difficult or impossible. While this cannot be forced because the OS scheduler controls things, it can
be influenced by changing the thread priorities dynamically.

Java’s version of the thread pool implementation is quite extensive and offers a lot of customisation
with regards to the behaviour of the threads and the behaviour of the pool in certain situations. The
Executor framework provides basic implementations of the standard thread pool pattern but also
variations such as thread pools based on timers and work-stealing thread pools. For the purposes
of this project, the standard thread pool implementation that is provided as part of the Executor
framework will be used.
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Chapter 8

Design

Throughout the development of the tool, the design and implementation stages were interleaved so
the following sections on design will be normally followed by an implementation stage.

8.1 Initial Design

From research conducted in the context survey, many tools that provide dynamic capabilities do not
have detailed concurrency information, and if they do it is in a textual form. The novel visualisation
methods that are being investigated will help to inform programmers and make debugging concur-
rent programs less of an uphill battle.

The key hazards in concurrent programming are the non-deterministic scheduling of the threads,
which can result in a range of invalid states if the threads are not controlled properly when they
share data. This is commonly known as a race condition. Liveness is the notion of making progress
within an application. If the wrong ordering occurs for synchronization it may lead to threads
making no progress because they are waiting on each other, this is known as deadlock. The third
hazard is related to the performance of the application that utilizes concurrency. Concurrency is
difficult to analyse from a compiler’s perspective and so this is the reason why many compilers will
switch off performance optimizations when multiple threads are detected.

To aid the understanding of these influences and in an attempt to improve the understanding
imparted on the user, the tool will help by visualising important concurrency information. Some of
the properties that can be deduced from the implemented visualisations include:

• The states of each thread throughout the program.

• The performance of threads throughout the program.

• Threads that own a monitor as well as threads that are blocked.

With these aims in mind, it seemed sensible to start with the simplest case possible and build on
this in an incremental fashion. Therefore, the initial design does not include any visualisations that
exclusively deal with the thread pool pattern itself but focus primarily on a simple multi-threaded
application. Once this approach has been seen to be feasible it can then be specialized to deal with
thread pools. An alternative approach could have started looking exclusively at thread pools and
then expand the visualisations to general multi-threaded applications. The reason this perspective
wasn’t pursued is due to the lack of familiarity with the thread pool pattern in general. It was a
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further limited by only a basic understanding of the synchronization primitives in Java and their
common uses.

8.2 Initial Design Decisions

Debugging tools are either active or passive in their analysis of a program. Active tools dynamically
monitor the program as it is running and show this data in almost real-time, while passive ones
collect data for analysis off-line, after the program is running. The information collected for off-line
analysis is commonly known as a trace. Deciding whether the tool was going to be active or passive
was the next decision to take, and depending on the type of profiling being done it can either
facilitate this or make implementation more complex. For targeting the Java platform, there are
two effective methods for obtaining information. Firstly, instrumentation at either the source or
byte-code level and the second method uses callback methods and events on the JVMTI. Both of
these can be adapted to create a trace of the running program or they could used to generate data
that is used in real-time. A trace can be generated on one machine and then analyzed on another
machine, removing the need to run the target program on a powerful computer. On the contrary,
it requires the user to effectively run the program twice before the user can make any decisions
on it. A dynamic tool also has the advantage that it can be stopped anytime or once it has passed
the region of interest. There isn’t any easy way to do this in a passive profiler without some sort
of pre-processing. But having a dynamic tool raises other complications regarding the retrieval of
the data and the analysis of it. The dynamicity places time constraints on the debugging tool as to
how long it has to process the data before it gets a new set of data. For the purposes of this tool
and the scale we are looking at, with time scales in the region of seconds, this should not be a problem.

In addition to the time constraints imposed by a dynamic analysis, the accuracy of the data and the
performance degradation due to the extra method calls must also be considered. For the purposes
here, accuracy will mean, is the data I am getting from the program the correct data, I.e. is it the
latest set of data and not a set from 5 seconds ago when the update rate is every 2 seconds, if so
does the visualization correspond to this data? Both of these aspects form part of the verification
process in testing. Accuracy is dependent on the quality of the implementation and not on whether
the tool is real-time or uses trace information. Another important aspect closely related to on line
and off line debugging tools is that invasiveness of the methods used to extract the information and
its affect on the performance of the target program. Regardless of whether code instrumentation is
used or event hooking in the JVMTI, there will be a small over-head added to the execution time of
the program but this is negligable. The sheer complexity of implementing bytecode instrumentation
is unappealing in itself and while libraries do exist to assist in this matter, they may not be flexible
enough and time restrictions on the project make this approach unattainable.

8.3 Implementation Language Decisions

The original choices of implementation language were between Java and C++. After some research
into graphics libraries and techniques for extracting the required information, Java was picked as the
implementation language. A data visualization library such as D3 was also briefly considered but
ruled out due to the lack of skill in web development technologies. Using C++ while being competent
in C, would of meant learning another set of features on top of working out how to visualize the data.
The reason why C++ was considered was based on the motivation to learn a new language and the
large support of graphical libraries that were present including Cinder, Cairo and OpenFrameworks.
On reassessment of the available libraries it was decided that the functionality provided was far too
much and the time investment needed to get to grips with the library were too high. C++ also lacks
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a default thread pool implementation, adding more work and increasing implementation time. Once
Java had been selected as the implementation language, a suitable graphics library that provided
enough power to create complex visualizations had to be selected. A pre-condition on the selection
is that it musn’t be difficult to grasp. Common Java graphics libraries include Java’s own Swing
library but also Processing and a range of other primitive graph plotting libraries such as G and R
via JRI. Swing is probably powerful enough but suffers from a lack of common abstractions, thus
inhibiting productivity. It was suggested that a discussion with someone within the HCI department
would be of use, and after consultation with Dr. Nacenta, Processing was picked as the library to
implement the visualisations. It provides a lot of good abstractions over low-level event handling
and has a huge wealth of documentation and examples to go with it but does not restrict you to only
using these abstractions [Fry et al., 2014].

8.4 Architecture

A clear distinction can be made between the separate parts of the tool. At the front-end there is a
GUI and multiple visualisations, while at the back-end there are data-structures and objects that
represent entities of interest. There is also a third part of the program which is the interface that the
backend communicates with to retrieve information from the target program. A strong de-coupling
of the concerns of each of the sections naturally results in a model-view-controller type architecture.
This separation allows the sections to work against an interface while their concrete implementations
remain independent. While the implementations of parts of the tool were changed the overall
architecture stayed constant throughout development.

8.5 Initial Visualisation Ideas

This section details ideas about the kind of information that would be helpful to a programmer
and some of the reasons why it would be helpful. It forms the basis of the implementation efforts
and helps guide the design for the visualisations. A majority of the visualisations here are for
multi-threaded applications and could be applied to an application that utilizes thread pools.

• Lock History - This would be on a per thread basis, detailing every monitor lock that the thread
has gained up until the current point in time. This can help pinpoint deadlock situations and
identify high lock contention.

• Highlight un-synchronized code - This would effectively track a threads trace through an
execution path and highlight sections of code, in particular memory accesses, where multiple
thread access is unprotected by synchronization.

• Data/Race Condition detector - This would be helpful in highlighting structural issues and
timing themes. It would be difficult to come up with a particularly effective solution because it
requires a global view of the source code.

• Extension of Lock history - This would require extending the information about locks to
highlight potential starvation situations between threads. A time metric would be used as a
threshold value to decide whether the waiting time for a thread is acceptable or not, explicitly
showing one consequence of thread interaction.

The following are potential visualization ideas that would implement some of the above.
• Thread tree - A diagrammatic view of all the threads in the executing program. It would give a

global view of the actions of the thread throughout program execution. Areas where multiple
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threads converge would show a lock contention between those threads, emphasizing potential
bottlenecks.

Figure 8.1: Example ThreadTree visualisation.

• Thread similarity graph - Allows the visualization of the amount of data that is common
between the threads. It can guide the programmer to areas where synchronization should be
properly implemented, which is not always the case. In situations where there is a lot of shared
data, it can be difficult to track statically which threads have access to what.

Figure 8.2: Shared data graph.

For the thread similarity graph, each thread is shown as a circle and the amount of shared data in
common is indicated by the proximity of each circle to another. Scrolling over a circle will reveal
other information such as a list of variables that the thread has touched, the names of monitor
objects, and the names of other threads it has been waiting on. Another choice would be to have a
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visualisation similar to the one below.

Figure 8.3: Initial visualisation design example.

This is essentially two graphs stacked on top of one another. The bars on the bottom part show
thread states and information relating to those threads such as IDs. On the upper half, it shows the
total throughput of all the threads taken as a whole. One example of calculating this value would be
to look at the proportion of all threads that are doing useful work at that point in time. Each bar
would then delineate the different states by using different colors. The next page shows two other
versions of this same visualization that have superimposed one graph onto another. Throughput
would be shown in the background while the main bar representing the threads would be in the
foreground. Note that due to the fact that the throughput is ‘behind‘ the threads, the bars would
need to be opaque to some degree, see figure 8.4.
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Figure 8.4: Visualization based on superimposed graphs.

Figure 8.5: Alternative version of figure 8.4

In figure 8.5 the threads have been removed and only sections of interest are shown, for example,
sections where threads are in a blocked state. In the previous visualisation, a large amount of
information is shown about all the currently running threads and so it can be difficult to locate parts
that are of interest. Filtering certain aspects such as threads in certain states can make it easier to
locate the required information. An example usage of this would be if the user wanted to locate a
possible deadlock scenario, then the bars will only be drawn when the threads are in a blocked or
waiting state. Wherever two or more blocks are drawn at the same time, deadlock is a possibility.
Further designs centered around thread pools and the kinds of information that is considered to be
useful when using a pool or a composite set of thread pools linked together. Details that could be
relevant to thread pool interactions include:

• Queuing time - The amount of time a task spends waiting in a queue before being executed.
Can be used to indicate a bottleneck in the queue or tasks are taking too long to execute within
the pool. Both indicate some recalibration of the pool is required.
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• Flow of tasks - A global view of the flow of information (as tasks) through a composite thread
pool. This is useful to get an overall view of the pools and its particularly applicable to a
composite pool setup.

• Pool efficiency - A display showing the proportion of the threads within the pool that are
executing at any given time. This is applicable to a composite pool or to a single thread pool.

The drawings below give an idea of the sorts of visualisations available specifically for thread pools.

Figure 8.6: Flow of information between thread pools.

In figure 8.6 each pool is represented by a block of size that is determined by the number of initial
threads within the pool. Once there has been some transfer of a task between the pools, a line
is drawn between the source and destination pools. At the same time, if the receiver pool starts
executing a task, one of the links is removed. By recording the number of completed tasks for the
receiver pool, the total number of submitted tasks and the number of links which represents the task
queue, the user is able to deduce the number of threads within the pool. The user may then wish to
change the number of worker threads to reduce the task queue. It can also be combined with the
general visualisation approaches to gain a greater understanding of the interactions of the working
threads inside a particular pool.

Figure 8.7: ‘Work’ view of the thread pools.

Figure 8.7 shows the amount of ‘work‘ in the form of tasks that have been submitted to a queue for
execution. The ‘stacks‘ change dynamically in size showing the amount of queued work for a pool at
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any one time. This is an alternative view of figure 8.6.

8.6 Gathering the data

So far only two proposals for collecting the data have been presented, one is using code instrument-
ation and the other being the JVMTI. A third way to do this is to create an API for users to insert
calls into their own code, essentially creating a user library. While this last approach is easiest to
implement it shifts the burden onto the user for inserting the calls. At the other end of the scale, byte
code instrumentation requires no effort on part of the user but is difficult to implement effectively.
Using the JVMTI is somewhere between the two, it allows the use of an API removing the need
to do code instrumentation (for most information) but doesn’t require the user to insert calls in to
their own code. A related point to this is how to transfer the data from the back-end tool to the
visualiser and there are a number of methods available including sockets, shared memory, writing
and reading to a file and invoking a method directly on the visualiser, passing data in the parameters.
For the sake of simplicity, the data will be transferred by writing and reading to a file, however,
disadvantages to this method do exist. Without employing complex document layouts such JSON
or XML the expressiveness of the file is limited to using punctuation or white space as a delimiter.
Initially no complex data will be required and so there is no strong reason to use other transmission
methods or markup documents such as XML.
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Chapter 9

Initial Implementation

After the initial drawings for visualizations had been completed and a rough idea of the types of
information had been established. Implementation began with a simple thread pool program that
had been created while researching thread pools as a design pattern.

9.1 Java agent

The lack of thorough examples and good documentation about how to use the JVMTI required a
lot of testing to see what things worked and what didn’t. Therefore, it took quite a while to get
an agent working with the information needed. Implementation of the agent was in C so direct
access to the JVMTI is possible, there was no great advantage of using another language because it
would still need to interface with a native API. It is compiled as a shared library and loaded either
programmatically (shown later) or as a command-line parameter when invoking the JVM with the
target program. Initially the target information was thread state information which is simple to
implement assuming there was references to the threads..

The JVMTI has events for thread initialization and thread death and it is these capabilities that were
first investigated. One of the advantages of using the call backs on these particular events is that
they ignore JVM threads that are always present because the events are only generated after the
JVM system threads have initialised. As it was later discovered, querying the JVM for all threads
resulted in user threads as well as JVM threads being shown. Once a thread was created, a reference
to the thread was saved via the event-triggered callback for thread creation. However, this resulted
in problems due to the reference to thread going stale after the call back for the original event
returned, crashing the JVM [Microsystems, 2002]. It became quickly apparent that this approach
where references to all the threads are saved via the thread creation event, was not going to work.

An alternative was to call a function at the bottom of the entry function for the library that does the
work required. To implement this, a function was created that loops and queries all threads’ states,
the update rate was controlled by suspending the thread initially for 2 seconds on each iteration. This
approach worked and provided the information needed. Further investigation revealed the ability
to create agent threads via the JVMTI, and for this to work, implementation of a helper function
that constructs a Java thread object was required. This is important because the entry-points into
the agent code should return once the appropriate settings have been set, as these are considered
callbacks themselves. Another important point is that a large number of JVMTI functions are known
as callback un-safe due to the way they traverse the heap inside the JVM. They cannot be used inside
callback functions such as the one invoked on a thread initialization event. Creation of another agent
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thread allowed these JVMTI functions to be used in a safe manner and does not require the use of
the events.

There are two entry-points (functions) into the agent library and depending on how the library is
loaded will dictate which entry-point to use. An important difference between these apart from the
way the agent is loaded regards the amount of information that is available through the JVMTI. One
of the purposes of the entry-points is to enable registration for events. If the agent is loaded at JVM
start-up then all events are available for registration where as if the agent is loaded during runtime
of the JVM, a subset is available. At this stage, it did not restrict the development but later on when
events related to monitors were needed, it forced a change from attaching to a running process to
loading the library when the target program is initially executed. This forces the user to start the
agent when the target Java program is started. Difficulties resulted in the development of an agent
taking a long time due to a lack of examples using the JVMTI API, and debugging was also difficult
because it was a library and not an exectuable. Therefore, whenever it crashed the only information
offered by the JVM would be its stack trace which included both Java and native functions making it
difficult to pinpoint the problematic area.

9.2 Visualizer

Development of the visualizer was interleaved with development of the Java agent so once a basic
agent was finished, focus shifted to the visualization part. Initially the plan was to leverage the
Processing libraries to generate the required visualizations but after some time struggling to find
solutions to draw a basic visualizer, and without resorting to manually drawing the shapes onto
the screen, a new library was sought. This library came in the form of a utilities library called
giCentreUtils that abstracted over Processing to allow the creation of various types of graphical data
representations including pie charts and line graphs. This allowed the creation of a simple bar graph
to show the thread state information. However it later turned out that the library was not flexible
enough therefore this this option was abandoned in favour of a manual approach.

9.2.1 GUI Improvements

So far the implementation has forced the user to start the target program with the agent and not
permitted them to attach to an already running process. This then influenced the decision to in-
corporate the ability for the agent to be attached to an already running Java program. Testing the
agent then became more flexible because it could either be loaded at runtime or into any currently
running Java process. The implementation for the loadtime entry-point was then copied into the
runtime entry-point function, giving the agent the same capabilities regardless of how it was loaded.
To realize the attachment mechanism on the Java front-end, the Java Attach API was required
[Zukowski, 2007]. The purpose of the API is to allow for programmatic access via Java to other
running Java virtual machines, in particular it gives functionality to list all executing JVMs as well
as the ability to load dynamic libraries into them. This is what happens when the attach menu is
selected from the Java GUI, it lists the current JVMs’ names in terms of the command executed to
start the JVM. It created problems however when the command was extremely long (as is the case
when eclipse is running) so to deal with this, a limit of 50 characters was imposed after which the
string was truncated.

This proved successful and it was later extended to allow for the Java front-end to initiate the whole
process by launching the target Java program and injecting the Java agent into this JVM. The user
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9.2. Visualizer

now has a choice whether to load during execution of the target program or before. Two important
Java API’s were used here, one that deals with creating processes called ProcessBuilder and the other
that implements a simple way to search the file system. ProcessBuilder allows the execution of a
command and arguments as if the user were typing it into a shell, example code below shows the
method invocation.

ProcessBui lder pb = new ProcessBui lder ( " j ava " , "−agentpath : " + homeDir +
AGENTPATH, f i leWithoutEx ) ;

//homeDir − Home d i r e c t o r y of user
//AGENTPATH − F u l l path from user home d i r e c t o r y
//f i leWithoutEx − Target Java c l a s s f o r execut ion

Implementation of this is simple but could be improved because it relies on hard coded paths and
the library being in a specific place.

An unpleasant side-effect of having the visualizer control the initiation of the the Java agent and
target program is that is introduces implicit timing restrictions. In this case, the visualizer must not
attempt to draw any visualizations hence request data, until the target program has started running
and Java agent loaded. This was enforced by simply ordering the method invocations correctly so
the sketch cannot start drawing until the methods that execute the Java program and load the agent,
have returned. Although there is no guarantee that if something were to interrupt the process from
starting but not notify the GUI then this could cause a fatal error. It is important to note that at this
point, there was only one visualisation, and so ordering of method calls was enough to prevent the
visualizer drawing before the agent was loaded. In later implementations a shared object is needed
to facilitate signalling.

9.2.2 Data Visualisation

Implementation of the data retrieval is done by repeatedly calling functions that query for informa-
tion. These function calls were wrapped in a while loop that also contained code that forced the
thread to sleep for 2 seconds, slowing down the polling. Results of these calls are written to a
file with a specific format, in this case it was simply the thread name followed by the state as an
integer with a tab separating them. Using a tab between them made it easier to tokenize the string
when reading line by line from the file. The visualizer is then tasked with reading this file and
drawing a visualization to represent the thread states. Drawing the first visualisation manually
involved drawing the shapes and lines onto the sketch by using a coordinate system. Within the
visualiser code itself, an array of JVMThread objects that represent each thread are kept. Each
object corresponds to one currently executing thread, storing information related to that thread and
providing the link between the thread state and the position on the canvas where it is drawn.

The thread state graph is drawn by creating a rectangle for each thread and state, using colour to
show the range of states. As long as a thread stays in a particular state the block drawn onto the
graph is extended (literally) periodically after each update showing the whole history of the thread
from a certain point. Within each JVMThread object, a stack keeps track of a Block objects that wrap
coordinate information for each of the blocks, allowing them to be drawn. The reasons as to why a
stack is used stems from the fact that the order that the blocks were created needs to be preserved
and using a stack enforces this. An example would be a thread that has changed state twice over a
10 interval period going from n-10 up until time n. If it changes at interval 5, then between intervals
0 and 5 inclusive, a block will represent that time period with a certain colour. After this time period,
a new block is created with a different colour to represent the different state that the thread is in.
This is explained further in a diagram below:
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9. Initial Implementation

Figure 9.1: Representation of how the blocks are drawn.

Here the co-ordinates of interest are labeled and it indicates how the blocks are drawn for each
thread. Each JVMThread object is looped over and their respective stack of Block objects is examined,
permitting the blocks to be drawn for each thread sequentially. The update rate of the visualiser is
controlled by the frame rate, which initially had an update rate of 2 times a second. This is much
faster than the rate at which the agent updates so there is no possibility of the visualiser missing
information from the agent. The sequence of events for the visualiser is as follows:

1. Update current states and create a new block if necessary (i.e. if the state has changed since
the last interval.).

2. Draw axis.
3. Loop over each JVMThread object, inner loop over each Block object in stack to draw it.

A screen-shot of the visualization working is shown below.
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9.2. Visualizer

Figure 9.2: Initial thread state visualizer. All present threads are shown a long the y-axis and the
history of the thread is shown as the coloured blocks, increasing in time.

9.2.3 Testing

To make sure the visualizer was functioning correctly, output from the agent regarding the states
of threads was checked against what the visualizer was showing to confirm they had the same
information.

39





Chapter 10

Second Design Iteration

A lot of experience had been gained from the first iteration of development and design. A much
clearer view of what the JVMTI was capable of gave some ideas as to what could be displayed for
the second visualisation. The focus for the second general thread visualisation was on efficiency.
This can be useful when trying to get a general overview of the threading in the application and may
help highlight areas where threads are making little progress. It could also be used as a verification
tool by comparing results against expected behaviour. To implement this, a metric can be used to
derive how ‘useful‘ a thread is and the approach that will be used looks at how much CPU time the
thread has had. Calculation of the proportion of time that a thread has had CPU time would be an
example of one of these metrics. This is possible by dividing the amount of time a thread gets on the
CPU by the duration of the process up to that point. The JVMTI has functions that allow the capture
of time stamps so these can be used to calculate the total time. A different approach could look at
the amount of time the thread has spent waiting or blocked.

The type of data that we get from this visualisation lends itself to something like a bar graph or line
graph. Keeping in mind that this is a dynamic tool and the emphasis should be on the differences
between the threads, some sort of chart would be most appropriate. This explicitly shows the direct
value-to-value comparison between each of the threads.

Incorporating a second visualisation into the first one would be done by ‘sharing‘ the sketch and
calling a separate method to implement the drawing logic. Keyboard listeners could then be used
to switch between the visualisations by changing an object reference, with each object representing
one type of visualisation. It would make sense here to create an abstract base class that provides
partial implementations of the draw() and setup() methods required by Processing. A class is created
then for each view that extends the abstract class and the implementations would override the draw()
and setup() methods. The reference switch would then cause the reference to point to an object that
contains drawing logic for a different visualisation. This makes the code more modular so that
further visualisations can also be easily added and reduces the burden on resources by only using
one base Processing sketch. The disadvantage of this is that we cannot draw them at the same time,
something like this would require each visualisation to draw into its own Processing sketch.
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Chapter 11

Second Implementation Iteration

To realise the design for the second visualisation, the biggest modifications needed to be carried
out on the visualiser so that we are able to switch through the different visualisations. The agent
was first extended to get the required timing information via JVMTI functions. Execution followed
exactly the same algorithm as the one in the first visualisation, show below:

• Get all current threads connected in the JVM (excluding native ones).

• Get CPU times for each of the threads.

• Calculate proportion of CPU time compared to total program running time and print out to
file.

Because we are dealing with time here the data types used to represent the values need to be carefully
checked so that they don’t have a chance of over-flowing. The data types that the functions return are
unsigned long integers that are able to record a time span of 584 years, in nanoseconds. To calculate
the total time of program execution, a time stamp that is created when the agent is loaded is saved,
in addition to a value of the current time stamp.

Each thread had an associated Java object representing it and storing the data from the Java agent. A
group of simple loops and an array list was enough to implement this visualisation. This is mostly
due to the fact that a library is used to draw the main component of this visualisation. The size
of the data that is being received from the agent is not of sufficient magnitude where faster search
algorithms would need to be employed.

With respect to drawing the graph, the giCentreUtils library that was abandoned in the first visu-
alisation is used. This allows the creation of the bar graph by calling a few methods to setup data
values, taking far less time to implement versus manually implementing the drawing logic.

This current version does not deal with all cases however, a program that contains threads which
initiate some time after the initial time stamp being created will have a skewed result. The imple-
mentation is based on the assumption that all the threads within the program have been running
since the start of the program. A fix for this is trivial but has not been implemented yet. In addition,
the original implementation didn’t deal with threads that died during execution. This has since
been fixed by implementing a simple cleaning function that removes threads if they have not been
‘seen‘ in the next update. All threads that are alive should have some sort of value from the agent,
therefore any threads that do not appear must have died between the last update and the present.
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11. Second Implementation Iteration

Figure 11.1: This is the result of this implementation cycle, with each bar representing a thread. The
height of the bar represents how much execution time the thread has had proportional to the total
program execution time.
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Chapter 12

Third Design Iteration

The third visualisation will revolve around the synchronization primitives of Java. The interactions
between the threads with synchronization primitives is an important part of debugging concurrent
programs. So it is helpful for programmers to see at which times threads are obtaining monitors
and show which threads are waiting on these monitor locks. From this the user can deduce areas
of deadlock and explicitly see where there is lock contention. Information that is displayed in this
visualisation can be seen in other tools but is not shown graphically.

The idea is to show each thread as a vertex in an N-sided polygon with the number of sides de-
pendent on the number of threads present. Once a thread obtains a monitor lock, a ring will appear
around the vertex after which any threads that are waiting on the same monitor lock will have a line
drawn from their vertex to the vertex representing the thread holding the lock.

Already implemented functions inside the Java agent to fetch information regarding thread states
can be extended to accommodate this visualisation. Similar to the previous visualization methods,
the data will be stored inside the visualiser in a similar way to both previous implementation cycles,
except this time there will be an emphasis on modular design. The thread information, polygon
information and the monitor information can be separated into their respective sections but must all
be related to each other to allow quick access between different sets of information.
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Third Implementation Iteration

After all existing threads in the JVM are requested a JVMTI function can query the thread to check
for any monitor locks that the thread may own. If any are found, then this monitor object itself is
queried via another JVMTI function that returns references to all the threads waiting on this monitor
lock. Due to the fact that it was implemented inside the original looping code that gathered data
regarding thread states and CPU time information, the resolution and accuracy of this visualisation
is bound to the rate at which the state information is produced. But there is no real reason why
either of these should be faster than the other, ideally they should both be as fast as possible. This
information is output into a file where each line contains a list of thread names, the first is the name
of thread that holds the monitor lock and the rest of the names are threads that are waiting to gain
entry into the monitor.

Much of the visualiser was implemented by re-using some of the classes from the other visualisations,
especially JVMThread which encapsulates information about a thread. Instead of using an array,
this time a hash table was used with a hashed form of the thread’s name as a key, the default
string hash function is used here and it is assumed that all thread names are unique. A hash table
is advantageous over an array because it allows instant lookup but with arbitrary keys, and this
operation is quite frequent. Two important flags within the object were added to show when a thread
is holding a monitor object and also to mark the thread as seen. Every time a new set of thread data
is read in, all current threads have their states updated and are marked in this process. After the
global update has occurred, any threads that are not marked as seen are removed, ensuring that the
data is consistent with the data being output by the Java agent. Monitor information is dealt with
inside the visualiser by its own object that uses the Singleton design pattern. Within this class is
another hash table that stores a mapping between waiting threads and the thread owning the monitor
lock. On every update, if a thread owns a monitor, a reference is set inside its object that points to a
list containing the names of the waiting threads. However the implementation of the monitor object
makes this action redundant because there is already a mapping inside the monitor that can facilitate
access to this information. The reason it is present is because the current implementation cannot
handle situations where a thread may own more than one monitor lock. Keeping a separate mapping
for each monitor is a lot more cleaner than having the reference to a complete list of waiting threads.

Information relating to the drawing of the vertices on the screen was wrapped in a class called
Polygon and contained a reference to its corresponding thread via a local variable that stores a
key. This made it easy given a certain polygon, to query information related to the thread, such as
whether it held a monitor lock or not. By abstracting the coordinate information out it reduces the
amount of specialisation that the JVMThread class has, increasing is re-usability potential. To draw
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the visualisation, only access to the polygon objects is needed.

Figure 13.1: Third general visualisation showing thread locks and waiting threads. The thread
owning the monitor is highlighted in yellow while the threads blocked on this monitor have blue
lines linking them to the thread that owns the monitor.
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Chapter 14

Thread Pool Visualisation

Now that a better understanding of what is possible has been established, the focus of the project
will now shift towards thread pool specific visualisations. Using a composite thread pool as the
example to show the kinds of visualisations possible, extra information can be leveraged to visualise
in new ways.

14.1 First Design Iteration

The thread pool pattern itself adds an extra layer of complexity on top of already complicated thread
interactions. These are exacerbated when we try to form composite thread pools and work out the
complex interactions between each pool. When looking at thread pools, factors such as efficiency,
throughput and information flow are important to understanding the interactions. And for this
reason, the visualisations will focus on these areas. A user can then deduce how effective a thread
pool is and tweak it so that the performance is maximal. Bottlenecks can also be easily detected via a
visualisation and the general flow of tasks can be made explicit. Showing a deadlocking pool would
also be simple but is not implemented here. To visualise a composite pool, there needs to be an
implementation of a composite pool itself before there can be any analysis on it; the next section
details this.

14.1.1 Design of a composite thread pool

Java’s standard implementation comes in the form of a class from the Executor framework which will
be extended to add some further functionality, this includes the ability to ‘pass-on‘ a task once it has
completed execution to the next pool in the chain. Each pool will execute the same task, although in
a real implementation each pool may perform a different task, but for the purposes of the research
here this is enough. A test harness will then be constructed in order to automate the construction of
such a composite thread pool, making it easy to change certain parameters such as the number of
pools in the chain and the number of threads given to each pool.

14.1.2 Data extraction from the composite pool

The Executor’s framework provides a range of thread pool implementations but because it is
implemented in Java, no specific information relating to them is available in the JVMTI. As it turns
out the information available about Executor instances in Java offers a lot of information that could
be used in visualisation. The agent was initially going to be re-targeted for gathering the required
data but the JVMTI did not provision this. The starting idea was to try to ‘find‘ the thread pool
objects that had been instantiated by using certain JVMTI functions in the following ways:
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• Method hooking can be used to fire events every time a method is invoked. The method names
are known and so this can be an easy way to find the object. It incurs a heavy overhead because
all methods would create an event.

• Intercepting object allocation permits analysis of objects which could then be inspected to see if
it was the object we’re looking for. Again this is a very invasive approach to finding a specific
type of instance.

Further research lead to the conclusion that there was no feasible approach using the JVMTI. It
was obvious that the JVMTI was going to offer little in this case and so it was decided that it was
easiest to access the objects directly at the Java language level and get the information in this fashion.
Methods on the executor objects can offer information including:

• Total number of submitted tasks for execution in that pool.

• Total number of tasks that have completed execution.

• Total number of threads in the pool.

• Total number of threads actively executing.

• The largest pool size (when an adaptive pool is used).

Using this approach the visualiser will be moulded around the composite thread pool.

14.1.3 First visualisation design

Visually seeing how the information travels through a chained thread pool gives the user a way to
reason about global properties of the composite pool. This led to the idea of visualising the tasks
as they went through the pools, showing which pool they’re in. In this design each task is shown
as a square on a grid, the grid represents all the tasks that have been submitted to the composite
pool. Each pool is then labelled with a specific colour which is then used to colour code the square,
demonstrating which pool the task is in. As the pool progresses executing the tasks, the colours of
the squares will change indicating progression through the composite pool.

Figure 14.1: Sketch of visualisation idea.
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By viewing the colour of the tiles as the visualisation is running an indication is given to the user
where likely bottlenecks are occurring. Tiles that stay a particular colour for a prolonged period of
time could be due to a lack of worker threads in the pool but it is not definitive because this situation
also occurs if a task takes a particularly long time to execute. This allows the user to analyse the
tasks involved in this pool and modify them accordingly. The only exception is for the first pool
because all tasks are submitted at the same time in the example programs.

14.2 First Implementation Iteration

The details of the implementation of the first thread pool specific visualisation and the composite
thread pool are shown here.

14.2.1 Composite thread pool

To be able to access each pool individually there needs to be some addressing scheme used so each
pool will receive a unique ID. References to each pool are kept in an array with the index number
being the pools unique ID, forming a mapping. To allow a task to be ‘passed‘ from one pool to the
next, the pool had to maintain a reference of the next pool, enabling it queue the task for execution.
The standard implementation classes are extended and then wrapped in another class containing
a reference to the next pool in the chain, the advantage of using a wrapper is that we’re able to
change the underlying thread pool implementation without having to change much of the way
it interacts with the outside logic. Most of the extra information needed for the thread pool was
actually added to the wrapper and not the extended class, access to particular methods was also
required so extension of an Executor class is required.

Methods that enable interception of a task both before and after it has executed in a pool are
utilized. Interception of the task after it has been executed facilitates the task being passed to the next
pool. Method invocations for these interceptions are passed up to the wrapper class and the core
implementations of these methods are there, instead of inside the extending class. The advantage of
this is that specialisation is kept out of the underlying thread pool class making it easier if specialized
thread pool is required, it only entails replacing the underlying class and passing method calls up.
Orderly shut-down of the thread pool is required by the standard implementation otherwise the
pool will wait for tasks indefinitely. To implement this, a check is performed on the number of tasks
it has executed and if it matches or exceeds the number of tasks submitted overall then it calls the
shutdown method on the thread pool.
Each thread pool is instantiated by creating its wrapper class and then calling a method which sets
up an instance of the thread pool inside the wrapper, this is to prevent references to the wrapper
object escaping before its constructor has completed. The various parameters for the executor such
as the number of threads it uses, the timeout threshold for a thread and the type of queue it uses,
are all passed to the underlying thread pool via its constructor, much of which is unchangeable
from the wrapper interface. Changing these parameters are not of interest but are required in-case
modification of the thread pool is desired. Only the number of threads in the underlying pool is of
interest so this can be set via parameters to the wrapper constructor.

14.2.2 Visualiser

The information that needs to be known for this visualisation include, the number of tasks, the time
at which a task is submitted for execution, the unique pool id, the unique id of the task and the co-
ordinates of the square within the sketch space. Each task id is chosen by using the position at which
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that task is created within the group of tasks, it is simple and provides a guarantee that no task will
have duplicate ids. A task class is created to encapsulate all information relating to a task including
its id. Task objects are then stored in a thread-safe map to avoid inconsistencies when updating
the task’s pool id. Thread-safety ensures that any any atomic operation on the map is thread-safe,
in-case access synchronization is not enforced explicitly. The key for each task object in the map is its
id value, granting instant access to update its pool id each time it transfers between pools. Colours
are mapped to each pool using its pool id, set when the visualiser starts. Coordinates of where
the square will by drawn is set when the task is first added to the synchronized map, and not changed.

Calculation of the tile size is done by taking the number of tasks and then finding the next biggest
perfect square. By doing this, it keeps the proportions of the grid with respect to the number of rows
and columns equal for better visual proportions. Each square is then scaled to its correct proportion
by dividing the width and length of the sketch by the number of rows and columns respectively.
This does however result in some space at the bottom of the sketch when the number of tasks is not
a perfect square but this a minor aesthetic problem.

Figure 14.2: Grid of tasks from the first visualisation, each colour shows which pool the task is
currently in.

Initially the the backing data structure was polled at a rate set by the frame rate of the sketch, by
default this is 60 frames per second. This induced a rather high lock contention on the backing data
structure so to resolve this the frame rate was lowered to 30 frames per second. The only disadvantage
of the current implementation is that it uses a callback to send updates to the visualiser, holding up
the task while this is done. This may affect the ordering of the tasks as they are submitted to the next
pool but the delay is not significant enough to affect the overall behaviour of the composite pool.
An important point to note here is that the update method that is called as part of the interception
method in the pools must be ordered correctly with respect to passing the task on. The update to the
visualiser must be issued before the task is passed on otherwise a case can arise where the task has
completed the pool before the previous update to the visualiser has been written in to the backing
data structure, resulting in inaccurate data.
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14.3 Second Design Iteration

One of the deficiencies of the first visualisation is that the user cannot tell whether a task is actually
being executed in that pool or waiting in a queue for a thread to become available. This problem
will form the basis of the second visualisation which will explicitly show the number of tasks that
have been submitted but are awaiting execution by the pool. By incorporating information regarding
the active number of threads in the pool as well as the queue of jobs for the pool, the efficiency of
the pool can be concluded. Combining these sets of data for each pool, the user can get an overall
idea of how efficient the composite thread pool is.

To show this information, the user will be able to click on the sketch and select a position to a draw
circle representing the pool. Edges will then form between circles once tasks have been submitted
for execution to that pool. Each task submitted will create an arc to the next pool and from this
it will be easy to see the number of tasks that are waiting to be executed. The data needed for
this visualisation will be the same as the last visualisation in addition to information regarding the
number of completed tasks and active worker thread counts. These values are found by querying the
thread pool objects directly so the wrapper must support a method to return the underlying thread
pool instance that is contains.

In addition, the visualisation will be embedded into a frame that contains the first view, making
comparisons easy. The inheritance approach used in the general visualiser cannot be used here
because both views require their own independent sketches, they cannot ‘share‘ one. The next figure
shows a design drawing of the visualisation.

Figure 14.3: Sketch of second visualisation approach for thread pools.

14.4 Second Implementation Iteration

To determine the number of arcs the individual thread pools can be queried to get the total number
of tasks submitted and the total number of tasks that have completed execution. By subtracting
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the number of tasks completed as well as the number of active threads, the left over amount is
the number of tasks that are still queued. Values obtained via querying are not exact and are only
approximates, because of the high concurrency within one thread pool it is impossible to get exact
values that are valid for a substantial period of time.

Each time the user clicks on the sketch, a circle will appear that represents one thread pool, this can
be repeated until all thread pools have been accounted for. Processing provides useful abstractions
for event handling in the form of callback functions, so it is easy to get coordinate information of
where the user clicked on the sketch. Individual pools are represented by their own class and it
contains information such as the coordinate of where its circle is on the screen, this class is different
from the actual thread pool class.

Owing to the fact that the data is already contained within the underlying thread pool objects no
auxiliary data structures are required to implement the main drawing logic. A simple loop over the
PoolInfo objects exposes coordinate information for each pool which in combination with the thread
pool object, is enough to draw the sketch.

Figure 14.4: This is a screenshot from the tool showing the arcs between each thread pool. It is not
immediately clear the direction of the edge, in later versions this is corrected.

Difficulty was encountered trying to implement the curves using the Processing API so due to time
restraints an arrow with a number in the middle was used instead. It is less ‘visual‘ than using a
curve per submitted task but the same information is available and the fact that arrows are used
indicate the direction of flow through the composite pool is an additional advantage. The result of
the change to arrows can be seen in the next figure.
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Figure 14.5: The total number of tasks submitted but not yet executed displayed as a number on top
of the arrow.

Another advantage of using an arrow is that it scales well with many tasks, using curves imposes a
limit before they start being drawn outside the frame or obscuring other curves. It is difficult to see
on this screenshot because it is concealed by its colour and position, but each thread pool is also
labelled with its ID. Both the sketches were then added to the same panel with a supplementary
colour key for the first view displaying information about which colours are mapped to which thread
pool.
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Figure 14.6: The final result of the thread pool visualisation, both views are seen here. Right is the
‘task view‘ while the left is more of an individual thread pool view.

A strict ordering is imposed on the threads, without this the composite thread pool will start
execution before the visualisers have initialised and are ready to receive information. To prevent
this, each visualisations’ monitor object is used as a lock to control the order instantiation. The main
instantiating thread can then be controlled by waiting for notification from these visualiser objects.
After the visualiser objects have reached the end of their initialisation methods, they can then inform
the main thread that it is allowed to proceed. This stops the main thread issuing tasks before the
visualiser objects are ready to start retrieving information.
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Chapter 15
Enhancements

As a result of the development process certain sections of the program were often left unpolished.
This section outlines development that took place at the end of the implementation with the aim of
completing the user interfaces so.

15.1 General Visualiser

With respect to the first thread state visualiser, it is often the case that the chart will be drawn out of
view of the window and the user would need to extend the window manually to see the current
status of the threads. To make this more user friendly, an attempt was made to implement a scroll
bar by using Swing components. The scroll bar component works by detecting when the component
inside it gets bigger than the dimensions of the scroll bar’s viewpoint. Once this happens the scroll
bar fires an event and sets up a scroll bar with the correct parameters which then enables the user
to drag a bar to scroll horizontally. However, it was not possible to get the scroll bar to detect this
because drawing on the canvas does not increase the size of the component it sits in, and so the
component itself does not change in size.

Modifications were also implemented to the second visualiser that shows CPU time of the threads.
In the original implementation there was no code to remove dead threads and it would often display
threads that had already died, sometimes leading to the y-axis becoming distorted. A simple marking
algorithm is able to remove threads have not been seen on subsequent updates.

Functionality was also added in the third visualisation, this allowed the display of wait and timed
wait thread states. In addition, a colour key was added to give meaning to the colours of the rings.

15.2 Agent

An error log was created for the agent so that debugging issues would be made easier. When the
library is loaded, there is no way to differentiate between an error occurring inside the native agent
or an exception being thrown inside the JVM due to some action the agent has taken. For this reason,
a log file was created that records any errors from calls to JVMTI functions as well as errors inside
the agent. This is done by re-directing stderr to a file.
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15.2.1 General

After the final implementation iteration of the general visualiser, no code existed to cleanly close the
program once the target program had died. This was then implemented using sockets to communicate
between the visualiser process and the agent. Other methods of inter-process communication were
looked at but due to the high-level nature of Java, many were out of reach, an example would
be shared memory. Named and anonymous pipes could have been used but that increases the
reliance of the tool on a particular platform. Sockets were chosen because I was familiar with them.
However, as a result of using POSIX socket libraries it means that the agent has now become some
what platform specific. The visualiser itself cannot force the agent to shut down as there is no
platform-independent way of programmatically forcing the JVM to unload the agent, we can however
implement a clean shut down when the target program dies. To implement this, the visualiser
spawns a thread that listens on a TCP socket for any incoming connections. Once the target program
dies, the JVMTI invokes a callback function that connects to the visualiser. The only disadvantage of
this is that the visualiser is unable to get any information about the nature of the shut-down because
the callback invoked in the agent is not able to receive information like return codes.

15.3 Thread Pool Visualiser

Additions were also added to the thread pool visualiser with more information being shown in
the second view. New information such as the number of threads in each pool and the number of
threads actively executing has also been added.

15.4 Summary

Here will be an overall summary of the tools and a look at what they can do. The first part will be
about the first tool developed which is the general visualiser. It utilizes the agent to acquire data and
consists of 3 views, a thread state view, CPU utilization view and a thread monitor/lock view.

Figure 15.1: Thread state visualisation, the jagged edges are due to the slow rendering speed.
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The view in figure 15.1 is very similar to the visualizations offered by tools seen in the context survey
but the implemented tool here extends the information here by including all of the underlying Java
thread states. The user is now able to to explicitly see when a thread is blocked on something, and it
also gives the specific names for the thread states and doesn’t assume a thread is sleeping when it
enters the timed wait state which could be due to a range of reasons.

Figure 15.2: A version of CPU utilization proportional to the program under analysis only.

The second view seen in figure 15.2 is a form of showing the CPU utilization except its proportional
to all the threads in the program. This offers greater insight into the threads than simply seeing the
utilization of each CPU core as shown in some of the other tools. A user can then decide whether all
threads are being used most efficiently or whether they need to restructure their program. This is
not possible using the standard CPU utilization because this isn’t specific to the process that is being
analysed, it covers all processes.

In the final view seen in 15.4 there is a combination of data about current monitors, the current
threads available and information relating to the threads blocked on other threads. This same
information is available in some more complete suites in a textual format and the implementation
extends on this by creating a full visualisation that makes this information even more obvious. From
a usage perspective its a lot easier to see all the locks by using a visualisation because you can see all
the locks and blocked threads in one graphic.

For thread pools two complimentary visualisations have been created that aid the user in under-
standing the concurrency interactions between them. All of the following visualisations are new and
have not been seen in any of the analysed tools, mostly because it was specialized to the thread pool
pattern. The first visualisation gives a ‘task view‘ of the all the thread pools and the user can see
how the tasks flow through the thread pools. Each task is given a square on a grid and coloured
depending on which thread pool it is in, as they pass between pool the square changes colour. From
this the user can gauge how efficient the current composite thread pool is, if the tiles happen to
spend a lot of their time stuck on one colour compared to the rest of the colours there is a chance
that there is a bottleneck. But there is still ambiguity because the task may just be computationally
expensive, it cannot show when the task starts its execution. Dependencies and deadlock will show
up as tiles that are stuck in a specific colour while all others have completed. Generally the tasks in
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Figure 15.3: The third view available in the general visualiser, showing blocked threads and threads
that own monitors.

one thread pool are all the same, so you could assume that two threads inside the same pool that
have not changed colour while all the other tasks have completed are deadlocked.

Figure 15.4: The final version of the thread pool visualiser. On the the left is the ‘task‘ view and on
the right is the second view. See labels for more information.

The second view of the thread pool visualizer aims to compliment the first by explicitly showing a
job queue between thread pools and additional information on the activity of the worker threads.
Using this view the user can inspect a specific thread pools’ efficiency by monitoring the count

60



15.4. Summary

of active threads depicted as numbers above the circle representation of the thread pool seen in
figure 15.4. If it never becomes saturated then there is room to reduce the number or there may be
a bottleneck in an upstream pool. Bottlenecks are now made obvious by displaying the job queue
for a pool, this is the number of tasks sent to the pool but awaiting execution. It is shown by an
arrow between two circles representing the pools on the view and will contain a number denoting
the number of waiting tasks. A composite pool that has only one arrow between two of the thread
pools indicates to some extent, there is a bottleneck. Severity will depend on the length of time the
arrow is around and the average number of tasks in the queue.

All the views in this visualisation have leveraged new information and created new visualisations
that show information that could be shown in a textual form but it would require an efficient
mechanism to show all the information at once.
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Chapter 16

Refactoring

Because of the agile nature of the development, it often left the product unpolished and lacking some
features. This section outlines what refactoring took place after the main development. A lot of the
simple data structures used were not really that effective for their tasks and so many of these were
changed to more appropriate data structure. An example of this occurred when refactoring the CPU
time visualisation, an array list was originally used but as the implementation grew, appropriate
integer keys began to become problematic. This was then replaced with a hashmap, which gives a
lot more flexibility for keys.

16.1 Calculating Update Rate

Information gathered in the agent is controlled by a loop that repeatedly calls the required functions.
To maximise the chances the visualiser detects a change, the exact time that the agent thread should
sleep before calling the functions again needed to be investigated. Original implementation settings
had the update at once per second, and while this is fast enough for most interactions, I wanted to
see whether this could be optimized slightly. There is no point in making it microseconds faster but
it would be advantageous to have it in the region of 0.25 - 1 second, this would increase the accuracy
of the data shown in the visualiser. The goal here would be to increase the rate of updates while
at the same time not exceeding the requested sleep period, with a lower bound of around 250 ms.
Any faster and this would force the visualiser to render at too fast a rate. The scheduler enforces
a lower bound on the times and even in the worst case, which is when we exceed our requested
time period, there isn’t any method to force the thread to be scheduled any earlier. This means
that while some of the requested periods still exceed the amount, a majority of the requests will be
on time. Within any fixed period, the proportion of on time requests will increase and hence the
update rate increases overall. For this experiment the third test program, originally created to test
the general visualiser was used and the settings for the agent were modified to output additional
information to the console. By running the test program with a general load on the computer, we
can see if the values stabilise around the requested value or whether they’re generally higher. If they
do stabilise it will indicate that the value can be decreased further because the scheduler has no
problem scheduling the task and if not we’re not losing anything by requesting a shorter sleep period.

Looking at figure 16.1, on the left are the results from using an update rate of 500 ms while the
right shows results using an update rate of 250 ms. The blue boxes highlight the calls that exceeded
the requested interval, while the red boxes highlight calls that did not exceed their requested sleep
interval. There is clearly a higher proportion of sleep requests that do not exceed the requested time
using the lower 250 ms rate which facilitates a faster update rate. Another consideration to look at is
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Figure 16.1: Timing results using a normal thread priority.

the thread priority used and for the test above, a normal priority was used as categorized by the
Java thread priorities. This offers an alternative method of potentially improving the chances that
the agent thread is scheduled as soon as its ready to be run again by increasing the thread priority.
To see if this is true, the test was repeated using the same time intervals but changing the thread
priority to high.

Figure 16.2: Timing results using the highest thread priority.

Analysis of figure 16.2 shows that changing the thread priority does not have a significant affect on
the proportion of on-time sleep intervals, the results to a large extent, mirror the results in the last
test. In this case it appears that thread priority does not have a difference but this does not rule it
out having an affect at other time scales. An increase in the update rate is advantageous and so a
new value of 250 ms was used as the time period between data requests within the agent and the
visualiser.
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Chapter 17

Evaluation

The project has proceeded well and proved to be difficult at times but I firmly believe that progress
has been made towards a better understanding of threading interactions. Results from the proof-of-
concept tool suggest that there are more intuitive ways to visualise information regarding concurrent
interactions that help concurrent programmers debug problems within their applications and adjust
to increase performance. In this sense the tool has been valuable in seeing whether such visualisations
are possible which has shown to be true and although there is no third-party evaluation to back-up
the usefulness of such visualisations, there is still much more potential to develop and pursue this
idea further.

17.1 Context Survey

Many of the tools seen in the context survey are tools used in large software firms. Some of the tools
have been research artefacts but its clear to see that there is demand for tools that allow programmers
insight and better understanding of the interactions between the threads in their concurrent programs.

Many have very similar visualisation methods for the information, the key difference between them
being the scope of their information. The fact that not many tools if it all, bother to use visualisations
enforces the idea that the focus of these tools is simply to get as much information as possible.
Where as, the focus of my implemented tool has been to visualise these data gathered and it offers
something that is not present in any of the tools surveyed so far, complete visualisation of all the
data gathered by the tool. Where there are visualisations in other tools, they are typically quite basic
with a majority of the information compiled by the tool displayed in a textual format without any
emphasis on important aspects. Not only does my implemented visualiser offer information, it has
designed the visualisations in such a way as to emphasise such important aspects.

17.2 Similar Research

17.2.1 JACOT

JACOT or Java Object Concurrency Tool was a prototype research tool that was created to visualise
concurrent interactions. It is particularly interesting because the research direction was very similar
to the one here and they used some interesting visualisation methods. It is an events-based visualiser
that uses the Java Virtual Machine Debugger Interface and UML sequence diagrams to model the
concurrency interactions. The approach used for data gathering was exactly the same as the one
in this project and one of the views showed exactly the same information. For example they had
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a thread state view that groups threads into their state using a colour code but instead of using a
moving graph, they represented the thread states as boxes on the screen and the threads as circles
that moved between the boxes as they changed state. The other view focussed on representing the
execution of the program by keeping track of the objects and the method invocations on these objects.
This was done by giving each object a column with a box at the top and as time passed a line would
extend from the bottom of the box towards the bottom of the view. It was scrollable and so the
complete history is available. It was particularly effective at detailing the execution but required the
user to stay alert and pay attention to the visualisation.

Many of the differences regarded the information it collected, in addition to the thread state
information it collected events on object allocation and method invocation. Using events for these
increases over-head significantly and does affect performance of the targeted application. There is
no mention of taking performance into account when they were designing the tool and this could
have a large effect on the result of the interleaving. The performance degradation could be to such
an extent that running the program with the tool creates interactions that may never occur under
normal conditions, giving a false impression. With the increase in the number of cores, the number
of threads executing concurrently is at least 8 on a up-to-date computer. Looking at the sequence
diagram view with this would result in a huge number of lines between the threads and consequently
will result in the user having trouble following the execution [Leroux et al., 2003] .

17.2.2 DYVISE

This is an interesting real-time analysis tool that permits problem-specific visualisations to un-
derstand the execution flow of a system. The focus was on creating a tool that allowed the user
to understand the execution of a system while minimising the burden on the user to instrument
their code. It specialises for a problem by allowing the user to specify the problem in terms of
threads, tasks and sub-tasks and utilizes the user definition of these to build a system-specific model
[Reiss and Karumuri, 2010]. It does not explicitly show the information such as thread states but
allows the user to effectively mark sections of code that they are interested in and specify threads
that they want to watch. It uses an event-driven approach to get information from the target program.
Once the program is executing it draws each thread as a horizontal section in the view and colour
codes tasks and sub-tasks a specific colour, an example screen shot is below.

Figure 17.1: DYVISE tool screenshot, each horizontal coloured bar is a thread. The coloured sections
represent whether its executing a task or sub-task.
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Extra information about the thread and method invocations is available via dynamic tooltips, created
when a user hovers their mouse over a section of interest. The flexibility of the tool is obvious but
it does suffer from drawbacks including the assumption that the user understands the problem in
the first place and can express it effectively using the primitives provided. It is not clear how much
concurrency information is available apart from listings of the threads themselves. While it does to
some extent visualise threads, the only similarity with my tool is its approach to data retrieval.

17.2.3 Alternative Visualisation Method

Another visualisation method that is based on UML sequence diagrams was the result of some
research that focused on how best to evaluate results from trace tools or other verification tools.
Targeted again at Java, they extended beyond the standard UML diagrams to incorporate extra
concurrency information. It visualises in a very similar way to the first tool JACOT but in addition it
integrates context-switching between the threads within the application, this explicitly exposes the
happens-before dependencies within the threads. This allows reasoning about the re-ordering of
events within a particular area. Other synchronization methods such as wait, notify and sleep were
also recorded and displayed in the visualisation, the figure below shows an example visualisation.

Figure 17.2: The visualisation shows multiple threads on the right and explicitly shows the interleav-
ing between threads.

The dotted lines away from a hexagons indicate the creation of a thread while dotted lines towards
the hexagons signify the scheduler context-switching off that thread. In this visualisation threads
are modelled as both data structures and tasks, hexagons on the right are threads while the square
boxes at the top are tasks that can be executed [Artho et al., 2007]. The solid black arrows indicate a
task switch with the wide vertical sections indicating execution of that task. Its important to note
that some of the task switches are heavily influenced by specific method invocations, for example
wait would cause the current thread to cease execution while notify would allow suspended threads
to become eligible for execution again.

The method here is quite comprehensive in that it maps exactly how the threads are interleaved
and includes some concurrency information. It is similar to my implemented visualiser in that is
shows when threads have been suspended or blocked, although it does not make this explicit. An
interesting point is to note that the tool requires trace information from other sources and provides
no abilities to gather information. This means that the accuracy of the visualisation depends on the
granularity of the data that it is given. While the visualiser shows Java concurrency semantics, there
is no requirement for the profiled target to be in Java which is slightly contradictory because it would
require transforming the trace to Java specific concurrency semantics. An additional disadvantage
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is that it will not work with real concurrent programs where multiple threads can be executed on
multiple cores.

17.3 Objectives

The objectives that were set for this project initially were set without any real knowledge of what
was possible and on hindsight it might have been a good idea to re-focus the objectives once more
research had been done into areas such as the JVMTI.

Two tools have been created that are able to show all of the Java thread states for both thread pools
and standard multi-threaded applications. This can be seen in the general visualiser’s thread state
view. Threads that own locks are also highlighted as well as the threads waiting on the lock, this
can be seen in the thread lock view of the general visualiser. There is no functionality to support
information about the section of code where the lock occurred, however, there is support to show the
interactions between the thread pools. The thread pool visualiser is able to colour code the tasks
depending on what pool they’re in and can be seen in the thread pool visualiser’s ‘task view‘. All
but one of the requirements of the primary objectives have been met.

All of the requirements that do not require a thread pool have been met in the general visualiser.
Thread state information, monitor information and information on blocked threads are all available
to any program that does not use the thread pool pattern by using the general visualiser, therefore
the first secondary objective has been met except for the fact that it does not highlight specific code
sections. Although it is not explicit, deadlock can be viewed in the lock view of the general visualiser
by looking for cycles within the blocked threads therefore, partially meeting the second objective.
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Chapter 18

Conclusion

This project has been an investigation into visualisation the interactions between threads with a
focus on the thread pool pattern as a prime example of where such analysis could be applied. It has
involved independent research into the key factors that affect users when it comes to understanding
concurrent interactions and potential methods for data retrieval using the JVMTI and the Java
language. The other large part of this project has been to discover and implement ways of visualizing
this information to the user in an intuitive and useful manner. It specifically targeted the Java
platform due to its Executor framework and a large number of support libraries available for creating
graphics. And although all the examples are of Java programs, the principles can be applied to
any language because the concepts behind concurrency are the same throughout most imperative
languages.

18.1 Key Achievements

The biggest achievement of this project is the discovery of new ways to visualize thread interactions
within normal multi-thread applications as well as leveraging the extra information available when
it comes to visualising thread pools. It has created new visualisation methods of existing data
permitting a better understanding by the user but it has also added new information to improve this
understanding. Many other visualisations not yet seen exist and their realization is bounded only by
the programmer’s creativity and the expressiveness of the graphics libraries utilized. Visualizations
aid the user’s understanding of concurrent interactions going on within an application and make it
more likely that better concurrent code is produced. It has also been demonstrated that visualization
as a method, is a good approach to showing such interactions, for example, the general visualiser it
is able to show threads that are blocked as well what they’re waiting on. A lot of the data available
in the tools surveyed could be equally shown in a visual way similar to the example given above.
Some things are more intuitively shown in a graphical manner, such as bottle-necks in the composite
thread pool or heavy lock contention. A good visualization makes it much easier to interpret
complicated behaviour much better than poring through textual data [De Pauw et al., 2002, p. 157].
The implemented visualizer offers an alternative method of imparting understanding to the user
and is very different in the way that it does this compared to previously seen tools. It leverages the
thread pool pattern to allow new insight into how a visualizations of thread pools and what they
can potentially offer.
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18.2 Drawbacks

The main drawbacks to the implementation in this project are that they’re very specific and not very
flexible, especially the visualizer that requires the use of Java’s Executor framework. However, these
can be generalized and made more flexible if time allowed. Further drawbacks to the tool include
the simplicity of the visualizations, someone with more graphics programming experience could
probably create something more appealing to the user but my lack of experience here prevented this.
A lot of the data gathered in this scenario may not apply to other runtimes that forbid such intrusion
into their inner workings. On the contrary, Java may have restricted the scope of visualizations
here with the data available. Other languages may provide other concurrency primitives or more
information which could facilitate better understanding by increasing the scope of the data.

With respect to the first general visualiser, the lack of synchronization between the agent and visual-
iser may result in missed information or no information at all. Every time the agent writes to the file,
the old file is truncated at which point the visualiser may try to read at this point and sees an empty
file. This manifests itself in the visualiser as ‘gaps‘ in the visualisation. An alternative design could
utilize an event queue, decoupling the agent from the visualiser, allowing the visualiser to have a
dynamic resolution controlled by the user. A restriction is also imposed on the target Java program
that forbids programs organised in packages because there is no way in the current implementation
of the visualiser to know this. It is safer for the GUI not to assume anything about the directory
structure and it makes no attempt to prepend parent directory names onto class names. A fix for
this would be to ask the user to set the class path as the base directory and then the sub-directory
names can be prepended onto the class name. The thread state visualiser also unable to keep the
history of the thread states while other visualisations are shown, preventing the ability to show
complete history since the program started execution. Currently, the history only goes as far back
to when it began drawing and not of program execution. Implicit in the implementation of the
second visualisation regarding CPU time is the assumption that the threads are created at the start
of the program. It does not take into account the fact that some threads may be initiated after
the visualiser has started and because the time is calculated from the program’s initial execution,
this may lead to skewed proportions. The effect of this is that threads may appear to have less
proportional CPU time than is actually the case. To fix this, each thread will need to maintain a
time stamp of when it was initiated and use this during the calculation of the proportional CPU value.

The tight coupling between the visualiser and agent can be reduced by abstracting out the current
methods required to gather data, improving usability. In its current form, the implementation is also
unable to explicitly show deadlock within a pool. A group of tasks taking a long time to execute
could equally be interpreted as locked worker threads.

18.3 Future

As a result of this project, it has been shown that visualisation is a viable approach to tackling
understanding in concurrent areas. The most obvious advances can be made in the visualizations
themselves, only a few were shown here but many more are possible. Further more, the visualizations
in this project could themselves be expanded to include other sources of data, for example leveraging
the fact that a thread pool is used. Other potential directions involve investigating whether there is a
general approach that could be taken to get the essential data regardless of programming language
or runtime, perhaps the construction of some kind of framework that can be deployed. Alternatively,
the approaches taken here for the composite pool visualiser could be generalized so that they no
longer require explicit incorporation into the user’s code.
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Chapter 19

Appendix

19.1 Testing Summary

Due to the nature of the program, it was easy to detect any abnormalities in the program using
a form a dynamic analysis by comparing the visualization on screen with the data that had been
gathered. This caught the majority of simple bugs, there were some implicit logic bugs that were not
detected this way and were only detected by doing static code analysis once a development cycle
had finished. Other testing methods such as test-driven development would not have given much of
an advantage and added increased the development time. The implementation does not use complex
algorithms or have many many execution paths so it was decided that using any more than standard
static code analysis would not be appropriate from a cost benefit point of view. Apart from this,
standard good coding practices were employed to minimize the chance of bugs within the code and
refactoring was also used to increase clarity and modularity. The section below shows the testing
carried out on the final implementations and their results.

19.1.1 Testing - General Visualiser

It is difficult to test dynamic tools like this one because the whole process needs to be examined and
not just the result at the end. Two approaches were used to verify correctness, firstly, test programs
were run with the visualiser. By knowing the behaviour of the program we can see if the visualiser
gives the same expected result. The second approach compares data given out by the agent with
what is being visualised. This comparison approach is akin to sampling, the biggest disadvantage
here is that there is no guarantee that the condition tested for at one point, in this case matching
values, is true throughout the execution of the program. However, if it can be shown that at some
points in the program the values match then this is enough because the execution logic is the same
for each set of values. This is to say, that there are not many if any execution paths through the whole
program. It should be noted that JVM threads as well as user threads show up on the visualiser so
its important the can be distinguished. The JVM threads are DestroyJVM, SignalDispatcher, Finalizer
and ReferenceHandler while user threads start with Thread or the name of the class that contains
the main method for the Java program.

Each test program was designed to test different aspects of the visualiser with the first focusing on
showing that the visualiser can correctly detect blocking. The second test program shows that it can
handle a relatively large amount of threads while the third test program shows that the visualiser
can deal wth threads spawning and dying in the middle of the program. Throughout the tests
general aspects of the visualiser will also be tested including its ability to detect the correct number
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of threads, show the threads in the correct states and ensure that timing data is accurate for the
second visualisation.

19.1.1.1 Test 1 - Synchronization Locks

This test attempts to show that the visualiser can correctly detect blocked threads by using a test
program of which we know the behaviour of. In this case, the test program simply spawns a small
number of threads, all of which attempt to access a synchronised section. What should be seen is
only one thread continuing execution while the rest are blocked waiting for the running thread to
relinquish the monitor lock. After the thread has completed its work inside the synchronised section,
it simply releases the lock and dies. So each thread will eventually get a turn at holding the lock for
this monitor. Results should also show the correct number of JVM threads within the JVM a long
with their states. The parameters for this test were 5 spawned threads plus the main thread. On the
visualiser we should see all user threads blocked apart from one which is running, and over the
execution time of the program, each of the blocked threads will eventually start to run and then die.

Figure 19.1: Thread visualiser showing sections of interest.

Labels in the above figure highlight the areas where the threads change state, either going from
blocked to running or from running to nothing (i.e. dying). Behaviour shown in the thread state
visualisation above is consistent with the expected behaviour and so it passes this test. The other
visualisation methods also need to be confirmed as showing correct data. Testing the second
visualisation requires the sampling approach, we do this by comparing values visualised on the bar
graph against values coming from the agent. To this end, the agent will be modified to output extra
data corresponding to values of interest which include total execution time of the program and the
amount of CPU time a thread has. Whichever thread has the largest bar should have the largest ratio
value when looking at the agent data. We can also say that the original time stamp used to calculate
the total execution time of the program stays constant and that the thread with the highest CPU time
will correspond to the same thread with the highest bar.
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Figure 19.2: Output of the agent on the right with the CPU time visualisation behind it. It shows
that data from the agent is correctly shown by the visualiser.

This screenshot shows output of the agent with the bar graph, it is clearly visible that the highest
bar corresponding to Thread-1 has the highest value in the Thread time column (furthest from left)
and the highest value in the proportional thread time colum (2nd from left). It can also be seen
that the total time column shown 3rd from the left is also constant. These three statements satisfy
the expected behaviour and so it passes this test as well. For the third visualisation, the approach
used in the first thread state visualisation can also be used here. It shows the same data as the first
visualisation except it includes extra information on monitor locks. From the description of the
program we can expect to see one thread highlighted as having a lock while the rest of the spawned
threads are in a blocked state waiting.

Figure 19.3: The third visualisation method showing all of the threads and their states.
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The screenshot shows Thread-1 highlighted as owning a monitor lock and 4 other threads in a
blocked state waiting for the same monitor lock. This is what was expected and so this passes as
well.

19.1.1.2 Test 2 - Thread pools.

The test program here starts with a thread pool containing 7 worker threads. 100 tasks are then
submitted for execution and the program terminates after all of these tasks have completed. This test
will attempt to check that the visualiser can deal with a relatively large number of threads while still
maintaining the other general aspects. It also allows some insight into the scalability of the tool. In
this test the tool should show a number of worker threads all executing at the same time with no
monitors. Throughput should be relatively high so the second visualiser should show a number of
high bars, each representing a worker thread from the pool.

Figure 19.4: Third visualisation showing all the correct worker threads.

By examining the list of values in the console output, it shows the pool threads all having high
proportions of CPU time relative to other threads. The list of values is just to the right of the
highlighted blue box. This is exactly what is expected of this test program and if we were to look
at the second visualisation, all of the worker threads would have had large bars. With respect
to scaleability, it shows that there is a limit to the number of threads that can be displayed. The
information is not yet obscured by the number of threads but any increase higher than the number
currently shown may start to impact on the clarity.

19.1.1.3 Test 3 - File IO

In the final test program, an IO bound program is created to test how the visualiser would react.
The theme is similar to the first test program except, instead of all new threads being spawned
almost immediately, a delay is created. The visualiser can then be examined to see how it deals with
spawning threads after the visualiser has started drawing and whether the correct state information
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is displayed. Each newly started thread will write 100 MB worth of ‘A‘ characters to a file. What
should be seen is threads starting in a staggered fashion and depending how long it takes for each
thread to create the file, they should all die in the same order that they started. It is expected that the
main thread will always be in the timed wait state because of the sleep method on that thread but
should start running once the sleep timer has expired.

Figure 19.5: Thread state visualiser showing the correct behaviour of the third test program.

The screen shot shows the result of the test and it shows that writing the 100 MB file takes a short
period of time and also more importantly the correct behaviour of the threads. The main thread is
always shown in the timed wait state due to the thread sleeping and while there is no change of
state shown when a new thread is spawned, it is still correct. This is down to the fact that spawning
a new thread is many orders of magnitude smaller in time scale than the resolution of state change
detection. While this might be seen as a fault in the visualiser, there is no practical way to get
resolution on that time scale, primarily due to the type of scheduler. In addition, the interactions
that the user will be interested in are on a much longer time scale.

19.1.2 Testing - Threadpool Visualiser

Because of the way this visualiser was implemented, there is not any way to verify it against test
programs. Instead, the focus will primarily be on verifying that the data shown on the screen is
what is actaully happening underneath. To do this, various parameters within the code that control
aspects of the composite thread pool will be changed and their effect analysed on the visualiser.

19.1.2.1 Task Visualisation

The first test will confirm the correct number of jobs being displayed within the visualiser; this will
be done by comparing the global variable which sets the number of jobs to the number of tiles seen
on the visualiser. The second test will confirm the number of tasks within each pool. This will verify
the colouring for each tile is working correctly. The number of tasks per pool is equal to the total
number of tasks that have been submitted for execution in that pool minus the total number of
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tasks that have completed execution in that pool. A method that repeatedly queries the underlying
executor objects is used to extract the required information and print it to the console.

Figure 19.6: Comparing the number of tiles with the number of submitted tasks.

Examining the number tiles compared to the value of the submitted jobs within code shows a match
and so it passes this test. The following screen shot shows the visualizer plus output from queries
done on the underlying executor objects. By comparing the number for each pool from the console
output with the number of coloured tiles that represent that pool, it confirms that the number of
coloured tiles corresponds to the number of tasks in that pool.

Figure 19.7: Comparing the number of tiles with the number of submitted tasks highlighted in the
blue box.

Values highlighted by the blue box show the calculated number of tasks per pool. There are exactly
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18 green tiles which corresponds to the second pool, while there are exactly 7 tiles corresponding to
the first pool.

19.1.2.2 Job Queue Visualisation

A similar line of action was taken for this part of the visualizer. The main focus of this part of the
visualizer is to add more information to the task visualization, in particular it allows the user to
see the number of jobs waiting in a particular pool. So to confirm that these values are correct, the
visualizer was modified slightly to output these calculated values. To calculate the number of waiting
jobs for a particular pool, the underlying executor needs to be queried for the number of submitted
tasks, the number of tasks that have completed execution and the total number of currently executing
threads. Then to work out the number of jobs still waiting to be executing we simply subtract the
number of executed tasks plus the number of currently executing tasks. The values are then output
to the console and compared with the values shown in the visualizer; they’re expected to match.

Figure 19.8: Comparison of waiting jobs with the calculated values.

19.1.3 Testing - Conclusion

An attempt was made to verify the important aspects of the visualizer and confirm that they are
indeed working as expected. The testing has not been exhaustive and there are many other facets
that could be looked at. Taking into account the visualizers simple logic behind the data gathering,
the amount of testing shown here is deemed to be sufficient.
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19.2 Status Report

The software artefact comes in two parts, the first part being the more general thread visualizer that
includes a Java front-end GUI and a native agent library. And the second part which is a combination
of a composite thread pool implementation including test harness and visualizer. Both of these are
fully functioning tools although not feature complete yet.

Potential improvements to the visualizers have been highlighted in the conclusion section in addi-
tional to new directions for further research.

19.3 Appendices

19.3.1 Build & Execution

In order to build the visualizers, the following tools are required (ideally latest versions):

• make

• ant

• GCC toolchain (at least C compiler and C++ linker)

• Java (must be at least version 1.7)

Ant is used as the main method to drive builds, there are two separate ant build files for each
visualization tool. For the general visualizer the make file requires modification in-order to correctly
compile the shared library. Simply edit the makefile inside the agent directory and set the appropriate
path to the directory that holds jvmti.h and jni.h, typically in the default install directory of the Java
SDK, see makefile for more details.

19.3.2 General visualiser

To build the general visualiser, execute the following in the base directory:

ant −b u i l d f i l e genvis . xml

19.3.3 Thread pool visualiser

To build the thread pool visualiser, execute the following in the base directory:

ant −b u i l d f i l e t p v i s . xml

19.3.4 Tested Builds

Tested on the Mac machines in the sub-honours lab, there were some issues with the thread pool
visualisation being quite slow. You may want to run it on a more modern machine. The Mac
machines ran OS X with:

• ant 1.9.3

• make 3.81

• Apple LLVM 5.0
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• java 1.7

The agent is contained inside the agent directory while the general visualiser is inside the vis
directory and finally the source files for the thread pool visualiser are inside the ThreadP directory.

19.3.5 Documentation

The main documentation of the tools comes in the form of the source code and the explanation of
design decisions is in this document. Additional documentation is contained in Javadoc for the Java
sections of the project while the native code contains source comments.

19.3.6 Usage Instructions

Using the tools should be quite straight forward, for the general visualiser select either open or
attach to execute a Java class file that contains the main entry method. Note: attaching does not
allow you to see monitor information.
Restrictions:

• Cannot execute a Java program in a package

• Directory structure must not be changed before a build, otherwise the scripts will not work.

Note: Closing the general visualiser does not shut the target program down. Restarting the visu-
aliser without terminating the agent will lead to erroneous results because the agent will still be
writing data to the file. If the agent shuts down gracefully, it will remove the temporary files in
the user home directory.

Run the jar files from the command-line by running:

java − j a r t p v i s . j a r # For thread pool v i s u a l i s e r .
j ava − j a r genvis . j a r <number of thread pool > <number of tasks > # For the general v i s u a l i s e r .

In the case of the thread pool visualiser it also takes additional arguments, namely two numbers to
set the number of thread pools and the number of tasks
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