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Abstract

This document describes the implementation of a compiler that accepts
St Andrews Algol (S-algol) programs and produces analogous Javascript
programs. It describes the implementation of a lexer, a parser, static
analysis stages and code generation for such a compiler. It also provides
an examination of the development in computer language design since
1979.
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1 Introduction

The over-arching aim of this project is to produce a Javascript compiler for
S-algol which will preserve the language and provide a resource for people inter-
ested in its history. This report contains details of how to compile and execute
the project, how the project was designed and how it was implemented.

A large proportion of the project requirements have been completed: the
high-level features that have been implemented are listed in Figure 1. These
features are verified by the test cases shown in Table 1 and examples of illegal
program detection are detailed in Table 2. These tables can be found in Ap-
pendix A. The web-page that provides an interface for the project is available
at
https://wt6.host.cs.st-andrews.ac.uk/st-andrews-algol-compiler/ .

1. A lexer and parser for the full S-algol grammar
2. Code generation for most of the language features

Procedure declaration and application
Variable declaration, assignment and re-assignment
Mathematical operations

Logical operations

Structure declaration, instantiation and access.

)

)

)

)

) n-dimensional vectors
)

) Types annotations

)

All loop types

Checking for scope errors

Checking for type errors

A command-line interface for the compiler

A ’promotional’ web interface for the language

N ook W

A test suite for both individual parts of the compiler tool chain and end-
to-end functionality.

Figure 1: Features Implemented

Some parts are missing from the final implementation due to technical and
time constraints. These are listed in Figure 2.



1. Image and pixel manipulation
2. Blocking io
Some of the standard libraries

Some of the client libraries

oro W

Automatic semi-colon insertion

Figure 2: Missing features

2 Context survey

2.1 Historical Significance of S-algol

The St Andrews Algol language (S-algol) was designed as part of Ron Morrison’s
PHD thesis in 1979 [13]. It was subsequently used to teach programming to
undergraduates at the university computer science department until 1999 when
it was replaced by Java. The language was also used at the local Madras college.

S-algol is a member of a family of languages known as the "ALGOLs’. The
name of the family references their ability to easily abstract algorithms. In his
thesis, Morrison highlights 5 features of programming languages that “roughly”
distinguish the ALGOLs [13, p5-6]:

1. “Scope rules and block structure”
2. “Abstraction facility”

3. “Compile time type checking”

4. “Infinite store”

Given this description, it is clear that many modern languages could be
described as being part of the ALGOL family. Indeed it seems that this is so
much the case that it is no longer particularly useful to classify languages as
ALGOLs. Certainly there are few modern languages that are not influenced
heavily by the ALGOLs. Reynolds corroborates this by his definition of the
ALGOL family in 1981 as “a conceptual universe for language design that one
hopes will encompass languages far more general than its progenitor” [18].

In the introduction to his thesis, Morrison offers a thoughtful commentary
on the problems of programming language design and the ways in which S-algol
intends to solve them. In this spirit, this report shall provide a similar analysis
regarding how modern languages have built on earlier languages such as S-algol.

The contrast between S-algol and modern languages were made clear during
the development of this project since it is written in Typescript - a language
released in 2012 [9]. Typescript has modern syntax and semantics and provides
excellent reference as to how S-algol compares to the cutting edge of program-
ming language design.



2.2 Javascript as a Tool for Preservation

Javascript was considered an appropriate language to use as a compile target
for this compiler given its advantages in various capacities. These are detailed
in this section.

Performance Since the main aim of this project is to be able to execute
code written in S-algol, performance is not a priority. However, Javascript
performance is known to be constantly improving: Mozilla has even managed
to execute some subsets of the language at near native performance [16].

Portability The principal advantage of Javascript for this project was porta-
bility. It contrasts with compiled programming language such as C which are
often architecture dependent. C may need to be re-compiled for each host op-
erating system or architecture that it is to be run on. Javascript on the other
hand can be distributed as source and executed on any platform. Furthermore,
Javascript runs in a browser sandbox which means that it is encapsulated from
the host operating system, preventing it from executing maliciously. Executing
C often requires elevated privileges since it can perform operations that might
be undesirable.

Ubiquity Access to the websites is the most basic function of most consumer
electronic devices sold today. Since Javascript is the programming language
of the web, almost every computing device can run it at least through a web
browser. Some devices offer Javascript first-class citizenship as an application
programming language. Native i0S apps for example may be written for the
most part in Javascript using the native 'bridge’ that makes it possible to execute
“Javascript scripts from Objective-C or Swift code, to access values defined in
or calculated in Javascript, and to make native objects, methods, or functions
accessible to Javascript” [2]. The extent to which Javascript is embedded within
today’s technology means there is always likely to be some device that can run
Javscript available.

Longevity The ubiquity of Javascript implies that the language will be still be
usable for the foreseeable future. Its longevity is being aided by the availability
of “compile-to-Javascript” languages. These languages use Javascript like “an
assembly language” [8]. Erik Meijer suggests that in these cases, “the browser
[may be able to] execute [Javascript], but no human should really care whats
there.” As such, it is unlikely that Javascript will be made redundant any time
soon.

Precedence Javascript is used as a target language for other technological
preservation projects. The “Javascript MESS” project is a movement to produce
an emulator for 'hundreds’ of virtual machine types in the browser specifically
for preserving gaming platforms. In justification of MESS, Jason Scott states the



benefit of using Javascript: “by porting this program into the standardised and
cross-platform Javascript language, it will be possible to turn computer history
and experience into the same embeddable object [type] as movies, documents,
and audio”[10] .

There is also precedent for writing compilers that target Javascript. Many
compile-to-Javascript languages have been implemented. CoffeeScript is one of
the most well-known compile-to-Javascript projects [3]. It does not offer vastly
different programming paradigms to regular Javascript. Rather, the language
offers ’syntactic sugar’ to make writing succinct Javascript easier. The language
has been validated by many companies including GitHub as a viable program-
ming language by using it for some of their big projects [7].

2.3 Language specification

A major challenge of this project was something of an archaeological problem.
The S-algol language was first designed and implemented nearly 40 years before
the start of this project. This fact, coupled with the language’s modest adoption
outside of St Andrews, means that there is a limited set of documentation
available. The sources available for reference were:

1. “S-algol Reference Manual” [14]

2. “ON THE DEVELOPMENT OF ALGOL” [13]

3. “Recursive Descent Compiling” [5]

4. “An introduction to programming with S-algol” [4]
5. A C implementation of the S-algol compiler.

6. An S-algol implementation of the S-algol compiler.

Within these sources 3 different grammar specifications are available. These,
grammar specifications are roughly analogous but contain subtle differences.

“S-algol Reference Manual” defines a context-free grammar that is the main
point-of-reference for this project.

“An introduction to programming with S-algol” defines a two-level grammar.
This is a variation of a Van Wijngaarden grammar that precisely defines all
possible strings accepted by the S-algol language including how types may be
combined through operations [4].

The final formal specification, is found in Morrison’s book, “Recursive De-
scent Compiling”. This appears to be a subset of the context-free grammar
found in “S-algol Reference Manual” that does not include the first-class pixel
and image manipulation features.

The “S-algol Reference Manual” grammar was chosen as the main point of
reference for this implementation since the document also contains a commen-
tary on each syntax feature. As I became accustomed to the S-algol syntax, the



S-algol implementation of the compiler also became an increasingly useful re-
source for understanding the grammar since it shows exactly how the structures
should be handled.

3 Requirements specification

Compiler implementation is a task that has provably infinite scope: the optimi-
sation stage of a compiler alone is infinite since the best optimiser would be able
to delete infinite loops in code thereby solving the halting problem - a problem
that is known to be uncomputable. As such the scope of the project must be
focused. To start to pare down the project into specific goals, it is useful to
examine the motivations for the project.

The principal motivation is that of preservation. It is desired that the S-
algol language should remain usable into the future to facilitate access to those
who are interested in what programming was like at St Andrews in the late
20th Century. This leads to the premise that the requirements of the compiler
project should be orientated towards making the S-algol language as accessible
as possible. This aim happens to be in-line with those of compilers for most
programming languages: the success of a programming language and its com-
piler is directly proportional to its popularity and this is driven in a large part
by how easy it is to start using the language.

The homepages of several popular programming languages reveal how they
promote accessibility.http://coffeescript.org a small IDE to try out the
language and a detailed documentation of the language source code. https:
//www .haskell.org contains a list of the language features, a REPL to try out
Haskell and links to news, documentation and downloads.

From these examples, the following concrete requirements are derived:

1. A play-ground to write and run the S-algol code.
2. A list of the S-algol features.
3. Links to the S-algol source-code.

4. Starting points for using S-algol in production.

To start breaking down the requirements of the core compiler, it is useful
to examine the different processes in the compiler. Compilers often operate
as a chain of different sections, each of which handle different parts of the
implementation. This includes, the lexer, parser, code generator, optimiser and
static analyser.

The lexer is a program that breaks a program string into logical tokens.
Lexers are often trivial programs and as such this should be fully implemented.

The next phase is the grammatical verification of the tokens. This requires
a parser. A parser accepts tokens that are in an order that is defined to be
correct according to a grammar. Parsers often follow a fixed structure, built
around the grammar. As such, once a parser has been designed for a basic



part of the language, it is a matter of graft rather than design to finish its
implementation. This means that a fully complete parser for the grammar
should be a requirement.

After these two phases have been implemented, the 'middle’ section of the
compiler tool-chain is open for infinite amounts of development. Many algo-
rithms can be designed to operate on the parsed code tree: it may be checked
for type safety, it may be optimised or it may be re-formatted. The flexibil-
ity of this section means that the requirements for this part of the compiler
must be more carefully managed. Some of the requirements for this section are
‘nice-to-have’ rather than critical. This allows some features to take longer than
expected. Features that are necessary for the compiler to output correct code
are prioritised, next, the original features of the S-algol compiler and finally,
features that can further assist the programmer.

The final phase of the compiler must be the generation of the code that
is to be run. In this case, the code is Javascript. The work required for this
section is bounded by the number of constructs available in the S-algol language.
However, some constructs - such as complex io - may require significantly more
work than the others. This means that development time for the code generator
is not as predictable as for that of the parser and lexer.

It is also important to test the compiler’s components and to provide an
end-to-end testing of the entire toolchain.

This evaluation of the compiler’s scope yields the following requirements.

1. A lexer that can correctly break an S-algol program into symbols and
keywords.

2. A parser that accepts the full S-algol grammar.

3. Analysis phases sufficient for correct outputting of code. This includes
correct recognition of constructs such as functions versus variable appli-
cation.

4. Code generation for as much as possible of the S-algol language.

5. A testing suite to verify correctness of the compiler and parts of the com-
piler.

The final consideration that is made during the requirements specification is
that of how input and output interaction should be managed in the Javascript
generated from S-algol. This can be considered part of the code generation since
the implementation details only need to be addressed at this point, however, it
does pose a significant hurdle in this part of the compiler.

S-algol has three first-class forms of input and output. One is writing to
stdin and reading from stdout. Another (which might be considered an exten-
sion of the first) is file reading and writing. Lastly, S-algol allows images to be
manipulated and rendered to the screen. The problems associated with these
modes are rooted in Javascript’s evented io model versus S-algol’s blocking io.
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Solutions will be addressed in the design section of this document. It is im-
portant at the requirements stage, to recognise that they may take longer to
implement than expected.

The choice of io affects which Javascript environment, the compiler is most
compatible with. In browser environments, io is mostly orientated around the
DOM but logging to the console is also possible and works in a similar way to
writing to stdout. In the node Javascript environment, io also come from files
and stdin. Since the focus is on browser compatibility. Io shall be prioritised in
the following order.

1. stdin/stdout reading and writing.
2. Image rendering.

3. File reading and writing.

There are some technical corollaries to these requirements that must be
accounted for early in the process. The first of these is the choice of development
language. The requirement that it must be possible to test-drive the compiler
in a browser means that it might be sensible to use only languages that are
compatible with Javascript. This means that all compilation and execution can
happen in the browser without need for a back-end. There are advantages to
this approach: statically served code is cheaper to host; it is less likely to break
since a back-end represents a single point of failure; and there are no security
or performance considerations necessary (the Haskell online REPL rate limits
test programs so that people do not exploit the service).

4 Software engineering process

4.1 Tool Usage

Before starting programming it was necessary to choose the tools that should
be used. Some were straightforward, others required some experimentation.

GIT is used for version control. This version control software is arguably the
currency of modern open source projects. Since one the targets of the project
is to release the code for access by others, it makes sense to use GIT to manage
the software versions.

NPM is used for package management. This is the most popular Javascript
dependency manager and has the best support from node.

TypeScript is used as the principal development language. The TypeScript
project homepage states that “TypeScript is a typed super-set of Javascript
that compiles to plain Javascript” [12]. This means that any valid Javascript is
valid TypeScript but not necessarily vice versa.
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Typescript features allow a programmer to give variables and functions ex-
plicit types. It also allows class-based inheritance as a substitute for Javascript’s
prototype-based inheritance. These features permit better static checking of the
code since TypeScript has enough information to check whether functions and
objects are being used properly within their scope.

This compiler-assistance is particularly useful when implementing a com-
piler. This is because a common design pattern in compilers is to tie features
of a language’s grammar to classes within. Abstract and concrete syntax trees
may be built up of the these classes. By explicitly defining the classes, there is
a compiler warning if access to the incorrect field of a node in a syntax tree is
attempted. In this project, there are over nine hundred classes that are dynam-
ically generated to define the concrete syntax of S-algol. It would be impossible
a human to remember all these classes and their field names; fortunately, the
WebStorm IDE has excellent TypeScript support and will automatically suggest
the field names. There is no performance penalty of TypeScript since all type
information is discarded at compile time, leaving plain Javascript.

A further advantage of using TypeScript is that it is a very modern language
and provides and excellent point of comparison with S-algol and the progress
that programming languages have made since 1979.

Mocha is a Javascript test-runner comparable to JUnit. This allows auto-
mated testing with structures results. It also integrates well with continuous
integration services.

Circle CI is a free continuous integration service that run test on the codebase
every time it is pushed to GitHub so that I could verify that everything was
working correctly with each change.

5 Design

The S-algol source of the original compiler provides design cues that provide
part of the inspiration for the design of this compiler. However, the constraints
on this compiler and the original mean that they have somewhat different re-
quirements. For example, the computational constraints on this compiler are
different to the original: Morrison’s compiler is optimised for performance on
constrained hardware; this implementation has no such constraints since com-
puters of today are orders of magnitude faster than computers of the past.

The differing requirements have meant that some design features have been
changed in this compiler from the original.

5.1 Recursive descent

One of the key design premises of Morrison’s compiler is the usage of “recursive
descent”. Recursive descent is structured — according to Morrison — such that,
“for every syntactic construct there is a procedure in the compiler which will
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analyse it”[13, p18]. These procedures contain code that consumes appropriate
terminals by removing them from the input and non-terminals by calling the
procedure that represents them.

Selecting an appropriate parsing technique is important for correct imple-
mentation of a compiler because some parsing techniques are not sufficiently
powerful to be able accept some classes grammars. “Modern Compiler Imple-
mentation in Java” describes these grammar classes using the diagram in Figure
3 [1, p66]. This shows how grammar classes may be compared. For example, a
parsing technique that accepts LL(k) grammars can also parse LL(1) grammars
since it is a subset but might not be able to parse an LR(0) grammar because
this only intersects with LL(K).

Unambiguous Grammars

LL(k) LR(k)

LLc)\ | LR

LALR(1)

SLR

LR(0)

Figure 3: Grammar Classes

The S-algol grammar was a source of a design flaw in the parser section.
Most of the S-algol grammar can be classified as LL(1) class but not quite all
of it. During implementation, I decided to deviate from the recursive descent
design in the parser section and uses a technique that automatically generates
the recursive descent procedures. This implementation did not consider the fact
that recursive descent can accept more than just LL(1) grammars. This caused

13



problems which are accounted for in the Parser section.

5.2 Single Pass vs Multi Pass

The original S-algol compiler was designed as a single-pass, recursive descent
compiler. This design contrasts with multi-pass compilers.

A single-pass compiler performs compilation steps, lexing, parsing, type
checking and code generation in one pass of the input code.

A multi-pass compiler does not perform all compiler stages in one pass.
Instead, it abstracts compiler stages into separate passes and uses some in-
termediate representation of a program to communicate these stages. These
representations are often trees of objects. Each pass traverses the intermediate
representation appropriately and passes on the results to the next stage.

Morrison sums up the distinction between the two methods in his thesis:
“The [single-pass] compiler is refined in layers rather than as separate passes”
[13, p18]. He claims that single-pass implementation “makes the compiler faster
but the real significance is that it makes the total code for the compiler smaller
and easier to write.” The performance argument was legitimate in 1979 but in
2016 it is less pertinant given orders of magnitude fast computing resources. The
argument for a smaller and easier implementation also seems to be mitigated by
the fact modern languages have more expressiveness for abstraction than S-algol
and its contemporaries. This means it is easier nowadays to write more abstract
programs and it is often better to use abstraction because it allows compilers
to perform static analysis on code to pick up problems automatically.

On key design consideration is that single-pass compilers are less capable
than multi-pass compilers. They lack the ability to check code in relation to
code that they have not seen yet. For example, they cannot check that a func-
tion call is correct if the function is called before it is declared. This is why
ALGOL languages often include “forward” declarations that inform the com-
piler in advance of a function’s name and its type signature. Morrison points out
that this is “awkward when recursive procedure definitions are involved” since
a function must be available in scope so it can reference itself. The solution to
this in S-algol is that “the identifier comes into scope after the parameter list
has been specified allowing procedures to call themselves” [15, p24]. In multi-
pass compilers, it is possible to infer forward declarations since they can do type
checking after all the code has been seen.

A more subjective advantage of multi-pass compilers is that they offer a
better structure for drawing abstraction between parts of a compiler. A type-
checker might, for example, be an optional component that can be removed or
replaced arbitrarily. In a single-pass compiler, each procedure might have to be
modified to change such a feature. Similarly, if a different target language is
chosen, it is simple to swap the component that deals with code generation for
a different one.

Design patterns can also improve the abstraction of multi-pass compilers.
Norman Neff describes how the visitor pattern can be used to abstract the
traversal mechanism of a collection of referenced objects (such as a syntax tree)
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from the operations on those objects. In the context of compiler design, Neff
claims that “the visitor pattern gives the abstract syntax tree responsibility for
defining a traversal sequence to be followed by all visitors” [17]. Neff points out
however that the visitor pattern is limited to fixed orders of traversal: it is only
useful if a programmer is doing many traversals using a fixed ordering such as
depth-first or breadth-first traversal.

The visitor pattern gives the abstract syntax tree responsibility for defining a
traversal sequence to be followed by all visitors. This pattern is used extensively
by this project.

The expressiveness and abstraction available to multi-pass implementations
justify its usage in this compiler.

5.3 Code Target

The original implementation of the S-algol compiler converts S-algol input to
'S-code’. This S-code is designed for execution on an S-code machine. This
is similar to Java’s execution model: Java code is compiled to bytecode and
run on a JVM. The advantage of this approach is that virtual machines may
be implemented for arbitrary hardware and operating system targets, allowing
code in Java or S-algol to be run on any platform without changing the compiler
implementation.

It would be possible to implement a similar approach for the Javascript com-
piler. It could could emit S-code and an S-code machine could be implemented
in Javascript.

The advantage of this S-code based approach is precise control over execu-
tion. An S-code machine could execute instructions atomically and would have
full access to the program state. As such, implementation of custom debuggers
and other runtime tools would be possible. Furthermore, some of the more nu-
anced details of S-algol could be implemented in the machine rather than the
compiler. Compilation of S-algol straight to Javascript, means this control is
lost to the Javascript virtual machine. In this case, all code outputted by the S-
algol compiler must precisely represent S-algol paradigms in terms of Javascript
paradigms.

The advantage of compiling directly to Javascript is a smaller, simpler project
that would allow the features that are already built in to Javascript virtual ma-
chines to be used such as debugging and state inspection. It is also likely to offer
better performance than the S-code approach. This is because many features
would have to be duplicated between the Javascript machine and the S-code
machine. For example, they would both have to perform garbage collection,
stack management and heap management.

Another key advantage of cutting out the S-code component is that the
output code can work inline with any external Javascript or libraries. This
is important because the Javascript ecosystem has a very established set of
libraries and build tools available.

The simplicity of the direct-to-Javascript approach as opposed to attempt-
ing to implement the S-code machine is the main justification for this design
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decision.

5.4 Overall Design

Given these decisions about individual aspects of the compiler, it is important
to provide an account of how the components fit together.

The fundamental input to the compiler is S-algol code. This must be lexed
into symbols. It then must be parsed into a concrete syntax tree which is an
object-representation of the S-algol code.

Concrete syntax trees often have duplicated semantics, since there is usually
more than one way of expressing something in code. This is true of S-algol, for
example there are a couple of ways that loops may be defined or that arrays
can be initialised. This means that it might make sense to convert the concrete
syntax tree into an abstract syntax tree: while a concrete syntax tree directly
represents the input program structure, an abstract syntax tree directly repre-
sents the semantics of the input program. This means that the abstract tree
is necessarily at most the same size as the concrete tree but often considerably
smaller. The advantage of a smaller tree is that static analysis stages and code
generation can be made simpler with cases that must be handled.

The abstract syntax tree structure that is used for S-algol is defined in ’./s-
rc/sAlgolCompiler/AbstractSyntax.ts’ and contains around 30 classes.

The output representation for the compiler should be Javascript. This could
be output as strings by the code generation section. However, there is a standard
set of classes called ESTREE which represent the Javascript syntax tree. Third
party libraries such as escodegen accept ESTREE and produce well-formatted
Javascript code. The advantage of producing ESTREE is that it is made up of
classes and can be statically checked by TypeScript, strings cannot. Also, other
third party tools such as Javascript minifiers can accept ESTREE, this could
be useful for adapting the S-algol compiler in the future.

Given this overall structure, the diagram in Figure 4 can be constructed. It
shows the stages of the compiler which must be implemented and the interme-
diate representations that are passed between stages.

fman Concrete
Yy syntax
symbols .
S-Algol code 3 Lexer »  Parser » Colt'l:irts ?ST
Abstract syntax tree
- AST ESTREE
Type and Scope .| Convert AST .| escodegen o Javascriot code
Checking “| to ESTREE ] library & p

.

Figure 4: Project overview
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6 Lexer

The role of a lexer in a compiler is to break up a continuous input string into
lexical symbols that can be accepted by the parser. As such a lexer does not nec-
essarily need to respect the grammar of a language. This assumption diverges
from the original S-algol implementation. The single-pass nature of the original
implementation means that the input string is lexed in the same recursive de-
scent as all of the other language operations and, as such, the program knows
which symbols should be expected to be lexed at any given point in the code.
For example, if the program is currently executing the function that handles
let declarations, it knows to expect the characters ’let’ and nothing else; then
the next string of characters will be a sequence of valid identifier characters. A
marginal advantage of this method is that it might save a bit of computation
since only a few possibilities need checking. However, it adds bulk to the parsing
stage of the compiler and since the overall design of this new implementation is
to emphasise separation of concerns over efficiency, it makes sense to implement
a simple lexer and separate parser than to add a lexer to the already-complex
parser.

Since the lexer should be able to lex input from any point within a program
and does not have grammatical understanding of the input, there are some
considerations that must be made to ensure the correct symbols are lexed. For
example, when a lexer sees “let”, it should produce a single LET symbol; but
when a lexer sees 'foo’, it should produce the three symbols F, O, O. As such,
symbols can be broken into priority classes. It is common practice for a language
to reserve a set of keywords that may not be used as identifiers. For example,
let let = 17 is an invalid program because let cannot be used as an identifier.

6.1 Algorithm

The algorithm implemented by this lexer tries to recognise some class of symbol
from the head of the input and if a match is found, it consumes that match
from the head of the input and produces appropriate symbols. In this project,
these symbols are implemented using an enum structure.

FEach class of the language is represented by a regular expression. Listing 1
shows the regular expression that is used to recognise keywords. This class is
checked first.

The expression is separable into three parts.

The initial character ~ asserts that the following regular expression should
only match from the start of a line. This is important for efficiency and general
functionality of the lexer: it is useless to recognise the string “; let a = 1;” as
starting with a LET symbol because it does not.

The body of Listing 1 contains an enumeration of all the possible keywords.
Full-stop literal characters are escaped since they are usually wild cards in reg-
ular expressions. An important consideration of the body of the regular ex-
pression is that the keywords are in reverse order of length. This means that if
two keywords have the same beginning characters, the longest one will always
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match. For example, the Javascript expressions ‘“isnt ...”". match(/"(is|isnt)
/) will incorrectly match the head of the input as starting with an IS symbol
whereas ““isnt ...”". match(/"(isnt|is)/) will correctly match the input string
as starting with an ISNT symbol.

The final part of this regex is a negative lookahed (?![a—zA—Z0-9.]). Thisis
a precaution that checks that the head of the input is not an identifier that starts
with a keyword. If it is, no match is made by this regular expression. As such,
this compiler accepts let letitia = 17 as a lexically and grammatically correct
program that assigns 1 to variable letitia. Without the negative lookahead, this
programme would not be acceptable.

Listing 1: Regular expression describing S-algol keywords

/" (read\.a\.line |structure|procedure|read\.name|read\.
byte| default :|out\.byte| nullfile |forward |read\.32|#
cpixel |maxreal|epsilon|read\.16]|screen |maxint|repeat|#
pixel|string|cursor|colour|rotate |out\.32|output|
vector [out\.16|write | pixel|reads|readb|readr |image |
limit | shift|scale|readi|begin|while|abort|false|peek]
true |rand |onto | text |read | case|xnor|nand|from |copy|else
|then|real| file | pntr|bool|isnt |end|xor|lwb|and]|ror |upb
|eof |int | off | nil|for|let|r\.w|i\.w|s\.w|s\.o|s\.i|div]|
rem | pic |nor |not |on|pi|do]|is|by]|if|to]of]at]or|in) (?![a
—zA-70-9.])/

The next class of symbol is that of the punctuation symbols. The regular
expression follows a similar structure. Here, order is important such that <= is
recognised before <. Lookahead is not important because they cannot be part
of an identifier since identifiers can only start with an alphabetic character.

Listing 2: Regular expression describing S-algol punctuation
/" (structure (=] |++[1=] <=| >=[\s|;|:|"[{|}|@|=|!|#|$
||%||&||\|7\|\)+/|*\\/| <T>ININNINTN =T INTTO N CFY)

The symbols that represent types are mostly just keywords, however, they
may be prefixed by an arbitrary number of asterisks and ¢’s. [\xc]* matches
such a prefix. It would be possible to write a regex that only lexes correct
types ie not 'c*c*c*cint’ but not ’ccceint’ however, this check is done by the
parser so it is an unnecessary complexity. Again, the type regex requires a
negative lookahead check that it is not trailed by identifier characters such that
the identifier of the declaration let introduction = 17 can be correctly lexed.
The regular expression for types is shown in Listing 3.

Listing 3: Regular expression describing S-algol types
/" [\#c]*(int|real|bool|string|pixel|pic|pntr|file|#pixel
|#cpixel) (?![a—2A-Z20-9.])/
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The final and most permissive regular expressions match identifiers and num-
bers. Listing 4 shows the expression that matches identifiers (which must start
with alphabetic characters but may contain numbers and full stops).

Listing 4: Regular expression describing S-algol identifiers
/" [a—2zA-Z][a—2zA-Z0—-9\.]x/

Listing 4 shows the expression that matches numbers including integers,
floats and exponents. Examples of these are “1”7, “10.4” and “1.4e10”.

Listing 5: Regular expression describing S-algol numbers
“(\+|=)?[0-9]+(\.[0-9]4+) ?(e[0—9]+)?

6.2 Comments

S-algol ignores strings that begin with exclamation marks until the next new
line character. These may be used as comments. The lexer stage of the compiler
removes these strings.

7 Parser and Meta-Compiler

During the implementation of the S-algol parser, I came across some problems
that seemed like they would benefit from some automation.

A meta-compiler is a software component used to assist the construction of
compilers. The meta-compiler component of this compiler is perhaps the more
exotic section of the project. Its core function is to parse the BNF grammar
for S-algol and programmatically analyse it. This allows many of the arduous
tasks involved in writing a compiler to be abstracted using code. Furthermore,
it generates code that helps with the implementation of the other stages of the
compiler. This section contains a more detailed break-down of the problems
involved.

7.1 Motivation

It was mentioned in the design section of this report that the core design princi-
pal of the original S-algol parser was the use of a handwritten recursive descent
structure. Inspired by this, the initial implementation of the Javascript compiler
was a handwritten recursive descent parser that implemented a trivial subset
of S-algol. This code was designed to accept a string of symbols from a sepa-
rate lexer and produce an abstract syntax tree to represent the input code. It
would also detect context-free errors in the grammar. Having implemented this
experimental design, it became clear that this approach is problematic.
Firstly, the process of writing functions to represent syntax is extremely
formulaic: the structure of the recursive descent is a direct mapping from the
syntax notation to functions. The effect of this is that it is easy to be inconsistent
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and cause confusion, especially regarding naming conventions and the design of
syntax tree classes. It is not semantically obvious, for example, whether a
recursive grammar fragment that represents a string of “bar”s (<foo> ::= bar
<foo> | bar) should be represented as

public class foo {
bars: string [];
}

or as

public class foo {
bar: string;
foo: foo;

“Modern Compiler Implementation in Java Second Edition” provides a good
set of conventions for doing this mapping which settles the consistency issue.
These are laid out in Figure 5. However, the implementation is arduous and
hard to change once completed.

1. Trees are described by a grammar.

2. A tree is described by one or more abstract classes, each corresponding to
a symbol in the grammar.

3. Each abstract class is extended by one or more subclasses, one for each
grammar rule.

4. For each nontrivial symbol in the right-hand side of a rule, there will be
one field in the corresponding class.

5. Every class will have a constructor function that initializes all the fields.

6. Data structures are initialized when they are created (by the constructor
functions), and are never modified after that (until they are eventually
discarded).

Figure 5: Conventions for representing tree data structures in Java. [1]

Another point of difficulty is the process of recognising which production
should be applied in a given parsing situation. Take for example the simple
S-algol program in Figure 6 that assigns “1” to the variable “a”.

Listing 6: Simple Program
let a = 17

The entry production for S-algol is <program>. The productions in Listing
7 make up the grammar subset that is required to parse the given section of
S-algol.
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Listing 7: Simple S-algol grammar subset

<program> ::=

<sequence >7
<sequence> ::=

<declaration >[;<sequence >] |

<clause >[;<sequence >]
<declaration> ::=

<let_decl> |

<structure_decl> |

<proc_decl> |

<forward>
<let_decl> ::=

let <identifier ><init_op ><clause>

The difficulty parsing this program lies in the fact that each production
may represent multiple grammar structures. This means that every time a
production is parsed, the input code must be inspected to work out which
structure within a production should be used. For example in Listing 7, before
a <declaration> is parsed, it must be programmatically intuited which of the
four types of declaration is implied by the input code.

Listing 8 contains a fragment of a recursive descent compiler that might be
able to handle the parsing of a let declaration.

Listing 8: Recursive descent fragment

) ) 9 )

var input = [’let’, ’a’, '= 175

function program(): Program {
return new Program (sequence());
}

function sequence(): Sequence {
if (isDeclaration (input[0])) {
return new Sequence(declaration (),
sequence () ) ;

} else if (isClause (input[0])) {
return new Sequence(clause (), sequence())

)

}

In Listing 8, the production recognition is abstracted by the functions, “is-
Declaration” and “isClause”. The implementation of the functions for this ex-
ample seems fairly straight forward. Listing 9 shows a possible implementation
that returns true if the input code begins with “let”.
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Listing 9: Possible ’isDeclaration” implementation

function isDeclaration(): boolean {
return input[0] == 7let”;
}

This seems sufficient to parse the code in Listing 6, because we know that if
the leading symbol is currently equal to “let”, we are dealing with a declaration.
But the real definition of “isDeclaration” should be as shown in Listing 10
because there are four different ways that a <declaration> production may
begin.

Listing 10: Full ’isDeclaration’ implementation

function isDeclaration(): boolean {

return input [0] == "let” ||
input [0] == 7" forward” ||
input [0] == ”procedure” ||
input [0] == 7 let”;

}

For a complete parser, it is necessary to write such recognition functions for
every production. This ends up being time consuming especially for productions
for which there is a lot of left recursion - where the first symbol is a non-terminal,
which in turn points to many more non-terminals which have productions for
which the first symbol is non-terminal.

The nature of these problems implies that they might be best solved algo-
rithmically. Given the repetitive, time-consuming work that would be required,
it seems obvious that at least the parser stage should be generated programmat-
ically from the syntax notation. This approach has the following advantages:

e Implementation of parser generator meta-compiler would take equal or
less time to hand writing parser.

e The generated representation of the concrete syntax would be consistent
and changeable by simple changes to the meta-compiler.

e An object-based representation of the grammar syntax would allow pro-
duction recognisers such as ’isDeclaration’ to be generated programati-
cally.

The integration of the meta-compiler can be expressed by the extension of
the overall project design diagram shown in Figure 6.

7.2 Basic Implementation

The first requirement of the meta-compiler is to implement a small compiler

chain for the BNF representation of the S-algol grammar. This is a simple

implementation since the grammar has a small syntax. Non-terminals are sur-
[13 ”

rounded in angle brackets; they are assigned using the “::=” operator; square
brackets represent optional syntax; and “*” indicates possible repetition.
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The meta-compiler

provides the lexer and
parser stages with
S-Algol grammar > Meta-Compiler - Grammar configuration based on
BNF transformations the BNF. These come in
\-/\ the form of runtime
objects or precompiled
files and code.
P —— Concrete
L4 y L4 syntax
symbols tree
S-Algol code > Lexer > Parser »> Co?:eArIS$ST
Abstract syntax tree
Y asT ESTREE
Type and Scope .| Convert AST .| escodegen »  Javascript code
Checking “| to ESTREE “|  library 7 P

L

Figure 6: Project Overview With Meta-Compiler

The meta-compiler parses this syntax and produces a representation using
objects: the production shown in Listing 11, for example, is converted into the
object structure in Listing 12.

Given this object-representation of the grammar, it is possible to algorith-
mically solve the problems encountered whilst hand-writing the parser.

Listing 11: Simple production
<let_decl> ::= let <identifier ><init_op><clause>

Listing 12: JSON representation of S-algol grammar fragment

var grammar = {

"<let_decl>" : {
productions: |
[
{value: 7let”},
{value: "<identifier >"},
{value: "<init_op >"},
{value: "<clause>"}
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7.3 Production Recogniser

The first problem tackled in the meta-compiler is that of production recogni-
tion. The meta-compiler provides an automated generation of functions such as
“isDeclaration”, shown in Figure 10. The task is to find a function that takes
the current expected production (initially, always <program>) and the current
first value in the input array then to output which production will parse the
current input; just as “isDeclaration” does.

Within the meta-compiler, this function mapping is represented by a pre-
computed table. A subset example of this table is displayed in Figure 7. Usage
of the table is simple:

1. Look up the current production in the left hand column.

2. Look up the first symbol in the input sequence in the centre column.
3. If there is no entry, throw a parser error.

4. For each element of the production in the right hand column:

(a) If the symbol exists and is a non-terminal, use this non-terminal as
the current production and return to step 1.

(b) If the symbol exists and is a terminal, consume the first character in
the input sequence and move to the next element in the grammar.

(¢) Otherwise, throw a parser error.

An example of this algorithm might be as follows. A program let a = 17 is
assumed to be a grammar fragment of type <program>. The leading symbol,
“let”, is then looked up in the table for <program>. In this table, “let” maps to
<sequence>. This identifies the beginning of the list to be of type <sequence
>. It is then possible to look up “let” in the <sequence> table, to get <
declaration>. This continues until the fragment is recognised as a <let_decl>.
The <let_decl> production starts with the “let” non-terminal. This allows the
parser to consume the “let” symbol and begin to parse the < identifier >.

The algorithm represented by this example shows how the recogniser table
can be used to effectively configure a generic parser. Details of this parser will
be discussed in a later section.

7.4 LL-ness of the S-algol Syntax

The basic meta-compiler design appears to describe an effective automatically
generated parser implementation. Indeed, when planning the design, I antici-
pated this to be sufficient for a working parser implementation. However, this
represented a misunderstanding of how expressive grammars can be.

Grammars can be classified based on the methods that are required to recog-
nise them. LL(1) grammars are grammars that can be parsed simply by ob-
serving the first symbol of the input. This first symbol will always reveal how
to parse the given section of the grammar.
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"let" <sequence=?
"procedure™ =sequence>T?
"structure” =sequence>T?
"forward” <=sequence>T?
"let” <declaration=[;<sequences]
<program ={;<seq ]
“procedure" <declaration={:<sequence=]
<sequence> "structure” <declaration={:<sequence=]
“forward" <declaration={;<sequence>]
<declaration=
<et_decl= "let" <let_decl=
"procedure” =proc_decl=
"structure” <structure_declk>
"forward” <forward>

"at"

let <identifier=<init_op><clause=
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The parser implementation approach described above can handle LL(1)
grammars. Recursive descent can handle a strictly larger variety of grammars.
This means that the S-algol syntax as documented by Morrison is not necessarily
always LL(1).

A non-LL(1) language feature in S-algol is the clause production. Listing 13
shows the non-LL(1) fragment. Significantly, it is impossible to tell if an input
is an “if, do” clause or an “if, then” clause by simply examining the first symbol
- both of them begin with “if”.

Listing 13: Fragment of the jclause; production
<clause> ::=
if<clause>do<clause> |
if <clause>then<clause>else <clause> |

Listing 13 produces a recogniser table containing the fragment shown in
Figure 8. This clearly shows the conflict that would make the suggested parsing
algorithm not work.

i if=clausesdo<clause=

i ifeclausesthen<clause=else<clause>

[i%
0
Iﬂ.
1]
1
v
¥

Figure 8: Clause recogniser table subset

Fortunately, it is possible to convert some non-LL(1) grammars into LL(1)
grammars using factoring. Listing 14 shows the factored clause production.
This effectively defers the decision as to whether an input sequence is an “if,
do” clause or an “if, then” clause until they actually become distinct — after
if <clause>.

Listing 14: LL(1) clause production

<if_tail> ::=
do<clause> |
then<clause>else<clause>

<clause> ::=
if <clause><if_tail > |

7.5 Left recursion

The other problem with generating an unambiguous S-algol recogniser table is
that of left recursion. This occurs when there is a cycle in a grammar, appearing
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on the left hand side of a production. A simple example of direct left recursion
example is <expression> ::= <expression>()|<number>. This example pro-
duces an infinite loop and thereby a stack overflow in the naive meta-compiler
implementation described above. This is because to recognise an expression,
it must be possible to recognise the first symbol of all of its productions. In
this case, one of these is an expression so to recognise an expression, it must be
possible to recognise an expression — that is circular.

The instance of this problem in the S-algol grammar lies in the <expression>
syntax although it is not as obvious as the previous example. Figure 15 shows
the expression production and the “exp” productions that establish operator
precedence. By proxy of these “exp” productions, it is possible that an expres-
sion starts with an expression. This is called indirect left recursion. This causes
the same infinite-loop problem with the meta-compiler.

Listing 15: Left recursion in expressions

<expression> ::= <expl >[or<expl >|x
<expl> ::= <exp2>[and<exp2 >]x
<exp2> ::= [T]<exp3>[<rel_op><exp3>]
<exp3d> ::= <expd>[<add_op><exp4d >]x*
<expd> ::= <exphH>[<mult_op><expbh >]x*
<expb> ::= [<add_op>]<exp6>

<expb> ::=

<expression >(<clause><bar><clause >) |
<expression >(<dereference >) |

This exact issue is addressed by Morrison in “Recursive Descent Compiling”
[5, p84]. Morrison’s solution was to defer the detection of opening brackets until
a full expression had been parsed. Fortunately, there is a way of expressing this
solution in a way that is compatible with the meta-compiler design. It can
be done by lifting the bracketed section into a new production above <exp6>.
This has the effect of parsing <exp6> before the brackets are parsed. It works
because none of the other “exp” expression could yield a value that can be access
like a string or an array. A side effect of the approach is that a wider set of
inputs is accepted by this new grammar. This is acceptable however because the
incorrect inputs may simply be caught during the type checking phase. Listing
16 shows the expression grammar with left recursion removed.

Listing 16: Non-Left-Recursive Expressions

<expression> ::= <expl>[or<expl>]x
<expl> ::= <exp2>[and<exp2>]x
<exp2> 1= [T]<expd>[<rel_op><exp3>]
<exp3> ::= <expd>[<add_op><expd >|x*
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<exp4d> ::= <expb>[<mult_op><expb >|x*

<expb> ::= [<add_op>]<expba>

<expba> ::= <expb>[(<clause><bar><clause>)][( < dereference
>)]

<expb> ::=

A similar solution is used to make the grammar non-left recursive for assign-
ment clauses that may have an expression on the left hand side.

7.6 Class-Based Representation of S-algol Grammar

The advantage of using TypeScript over regular Javascript is that it has type-
checking. This means that the TypeScript compiler can inform a programmer
of problems such as incorrectly accessing an object or returning the wrong type
of object from a function. Furthermore, this support can be integrated into text
editors. WebStorm, for example, has automatic code suggestion which can auto-
complete function and variable identifiers. This sort of support is not available
in regular Javascript.

To take advantage of these features, classes must be defined so that Type-
Script knows which fields and functions an object should have. To help imple-
ment of the rest of the compiler, the meta-compiler generates a class structure
to represent the S-algol grammar. This makes any operations on the concrete
syntax are type-safe. This is a marked advantage of implementing a custom
meta-compiler rather than using a third-party library.

8 Code Generation

Despite many similarities, some parts of S-algol do not have clear equivalent
implementations in Javascript. This means that code generation is less well
bounded than the parser or lexer: each grammar structure must be examined
and converted. This meant that most of the development time spent on this
project was spent on this component. This section of the report details how
these conversions are produced.

In many cases, where there are features missing from this compiler, it is
because there was not time to implement a Javascript equivalent. In some case,
such as the image manipulation constructs, a considerable amount of library
code implementation would be required.

8.1 Clauses as Expressions

In S-algol, some clauses can act as expressions with return types. Conditional
statements can yield a result which can be applied to a variable or argument.
Listing 17 is an example of a trivial S-algol program that assigns 1 to variable a
through a conditional statement. (Note that only “if, then, else” statements can
yield values since “if, do” statements do not have an alternate value to yield).
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An equivalent Javascript program might use the Javascript ternary operator as
shown in listing 18.

Listing 17: S-algol conditional assignment
let a = if true then 1 else 27

Listing 18: Javascript conditional assignment
var a = true 7 1 : 2;

This is a correct mapping however the Javascript ternary operator cannot
not handle more complicated expressions. The code in listing 19 represents a
marginally more complicated statement. Here, the result of the if expression
is simply “34”, however, two statements have yielded this number rather than
just one in the previous expression.

Listing 19: More complicated S-algol conditional assignment
let a = if true then {let a = 34; a} else 27

There is no idiomatic equivalent in Javascript: it is not possible to add a
block statement to a ternary operation. However, it is possible to use a func-
tion instead. A function can be seen as an abstraction over a set of statements,
just like a block statement except blocks are not reuseable, nor can they accept
arguments. As such, the Javascript program in Listing 20 might be an appro-
priate equivalent to the S-algol in Listing 19. The function “temp” is used as
an abstraction over the compiled S-algol block statement.

Listing 20: Javascript conditional assignment using a function

function temp() {
var a = 34;
return a;

var a = true ? temp() : 2;

Since this “temp” function will necessarily only be used once, it is better
design to actually remove it from the namespace altogether to prevent collisions
with other function names. This is possible with a some syntactic sugar available
in Javascript shown in Listing 21. An anonymous function is declared and
called in a single expression. Note the application of the anonymous function is
triggered by the parentheses on line 4.

Listing 21: Javascript conditional assignment using an inline function

var a = true ? function() {
var a = 34;
return a;
FO 202
This ternary design scales to arbitrarily large conditional statements and is
used as the implementation of conditionals in the Javascript compiler.
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8.2 Scoping

There is an advantageous side effect to using Javascript functions to express
S-algol blocks. This lies in Javascript’s scoping paradigm. In the S-algol spec,
Morrison describes the language’s very simple scoping system: “the scope of
an identifier starts immediately after the declaration and continues up to the
next unmatched } or ‘end”’ [13]. As such, S-algol may have indefinitely-many
scopes in a single program. In contrast, Javascript’s two scopes are described in
a Microsoft reference document as “global and local. A variable that is declared
outside a function definition is a global variable, and its value is accessible
and modifiable throughout your program. A variable that is declared inside a
function definition is local...is created and destroyed every time the function is
executed, and it cannot be accessed by any code outside the function” [11].

In this compiler implementation, scope checking is executed statically so it
is not necessary in most cases to ensure that the scope is verified at run-time.
However, there are some cases where the more-permissive Javascript scope will
cause interference between variables. For example the S-algol programme in
Listing 22 would be expected to print 5 then 1.

Listing 22: S-algol scoping
let a = 1;

if true then {
let a = b5;
write a;

}

write a?

However, a naively-compiled Javascript program in Listing 23 would print
5 then 5. This is because the if block is assigning variables in the global scope
whereas in S-algol, the if block creates a new scope. (It is important to note
that child blocks in S-algol do inherit scope from their parents such that if Line
4 were removed from Listing 22, the program would simply print 1 then 1.)

Listing 23: Javascript scoping

var a = 1;
if (true) {
var a = 5;

console.log(a);
}
console.log(a);

To coerce the Javscript program into acting more like S-algol, it is possible
to take advantage of the function-local variable features of Javascript. The
Javascript code in Listing 24 prints 5 then 1, just as was expected from the
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S-algol program in Listing 22. Furthermore, the inner scope inherits scope from
its parents just like S-algol scopes. As such, you can delete Line 4 from Listing
24 and the program will print 1 then 1.

Listing 24: S-algol-like Javascript scoping

var a = 1;

(function () {
if (true) {
var a = b;
console.log(a);

PO

console.log(a);

Single-use anonymous functions provide convenient S-algol-like scoping and
allow abstraction over block statements such that they can be used as expres-
sions.

8.3 Input and Output

Morrison raises the problem of io in his PHD thesis. He addresses the fact
that io interfaces for languages tend “to reflect the environment in which they
were designed”. As such he has optimistically tried to design S-algol to have “an
extremely simple I/O system” so that “together with the abstraction facilities in
the language, it will be powerful enough to handle any environment.” Morrison
adds wistfully that “This is perhaps a forlorn hope” [13, p16]. Indeed when it
comes to Javascript, this goal is perhaps somewhat forlorn.

Javascript has specific paradigm of handling asynchronous operations that
is different to other languages: it is evented. This means that when a piece of io
is required, a callback function is attached to that io. When the io is ready (the
data has been downloaded or the user input has been collected), the callback
function is executed with the io data as an argument to the function. Within
the Javascript run-time, there is a event loop which handles this: every iteration
of the loop checks for available io and callbacks which have subscribed to that
io. If matches are found, the callbacks are executed sequentially.

The implication of this is that it is not possible to have blocking io in
Javascript. Listing 25 shows the S-algol blocking io and Listing 26 shows the
equivalent using Javascript evented io.

Listing 25: S-algol blocking io
let a = readi;
write a + 17

Listing 26: S-algol evented io
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rl.on(’line’, function(line){
console.log(line);
1}

The differences between the models are just sufficient to make it very difficult
to compile arbitrary uses of blocking io to Javascript. The same problem exists
for file reading which works on the same principles in both languages.

There are a few possible solutions to this problem. The first might be to
re-implement this compiler using a virtual machine as the target. The more
precise control over execution that this affords would make it possible to manage
asynchronous functionality. This is because the machine would be able to pause
and play execution whilst waiting for io. This however would add considerable
work to the implementation that might mean that development could not be
completed.

Another possible fix might be to throw away the readi function from S-
algol and only support Javascript-esque io. This is based on the premise that
all the language features used in Listing 25 are also available in S-algol; most
importantly, the passing of functions.

The code in Listing 27 is a valid S-algol program. the first line declares the
existence of a function called “readLine” that accepts a function which accepts a
string. The next line defines a function called handler that accepts a string and
writes that string to stdout. The final line executes the function “readLine” with
“handler” as its argument. The implementation of “readLine” can be written
in Javascript as a library function as shown in Listing 28.

Listing 27: Javascript-esque io

forward readLine ((string));
procedure handler (string input); write input;

readLine (handler)?

Listing 28: readLine implementation

var readLine = function (handler) {
rl.on(’line ’, handler);

This latter approach is easy to implement but it raises the question as to
what makes S-algol, S-algol. Clearly, this approach breaks compatibility with
S-algol programs that have been written using blocking io. However, it does
allow a programmer to take advantage of the more-efficient io paradigm that is
built into Javascript.

Given that the evented approach is simpler to implement, this compromise
was selected, and this implementation of S-alogl does not support any of its
original file reading or writing functionality.
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8.4 Loops

Programming languages commonly have several different types of loop. S-algol
has three types. Different loops generally only exist as syntactic sugar. Often,
all loops can be translated to a while loop. As such, during the compilation of
S-algol, all loops are represented by a single abstract syntax class. This class
has three sections. The first is a clause that always executes at least once, the
second is a boolean test that conditionally ends the execution, the third is a
clause that only executes if the test is initially true and then executes until it
becomes false. These three sections are the essential parts of an S-algol loop
and allow all types to be compiled using the same code.

Listing 29: Loops as an expression

let x = 0;
while x < 10 do {x:=x+1; x}
write x7

The code in Listing 30 shows Listing 29 as it is compiled into Javascript.
The loop structure uses closure provided by functions in Javascript in the same
way that conditional clauses do.

Listing 30: Javascript loop implementation

var x = 0;
function () {
while (true) {
var \$ret;
if (1(x < 10)) {
return \$ret;
}

\$ret = function () {
x =x 4+ 1;
return x;

8.5 Implementing ’Abort’

In S-algol, the abort keyword stops execution permanently. There are a few can-
didates for replication of abort in Javascript. In node Javascript, the environ-
ment object called “process” has a member function called “exit” which behaves
like the POSIX “exit” function. It allows a node program to end abruptly with
a return value. This does not unfortunately work in the browser. Javascript
also has a GOTO-like syntax called a label that allows the execution flow to
jump between line numbers, however, this does not allow exit from functions so
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cannot be used to guarantee that a program is stopped from anywhere within
the control flow.

This S-algol implementation uses the Javascript exception handling to allow
halt execution. If an exception is thrown, execution is passed to the most-
recently-entered try-catch block. To support the abort feature, the compiler
wraps the compiled Javascript program in such a try-catch block and prints the
appropriate output. This means that any abort clause may simply be compiled
to a Javascript “throw” clause.

8.6 Vector Implementation

S-algol vectors are typed, multidimensional and of fixed length. These features
are common to most array implementations. The S-algol vector differs from such
implementations in a couple of ways. Firstly, they have customisable origins.
Most languages use zero indexing of arrays, such that the first element of an
array is referred to as element 0. S-algol allows the index of the first element
of an array to be set programmatically. Listing 31 shows three arrays being
assigned to variables named a, b and c. The arrays are each of type *int and
each have a length of 3. The values contained in each are 1, 2 and 3. The
difference between the arrays is that their first elements are indexed by different
numbers. This number is prescribed by the expression after the Q" symbol.
The first element of a has an index of 1, the first of b has an index of 100 and
the first of ¢ has an index of -60. The program will print three “1”s.

Listing 31: Array Initialisation
let a =@ 1 of int [1,2,3];
write a(l);

let b =@ 100 of int [1,2,3];
write b(100);

let ¢ =@ 40 — 100 of int [1,2,3];
write ¢(—60)
?

This functionality provides more complexity for the compiler design. The
S-algol vectors cannot be directly compiled to Javascript because it has no such
built-in method for customising the index scheme. As such, the index “offset”
must be stored such that it can be used to translate indices into Javascript’s
zero-indexed array scheme.

Another difference between the implementations is that Javascript does not
implement fixed-length arrays and simply resizes the array as required by the
program at runtime. In S-algol however, vectors are of fixed length and an
exception should be raised if illegal access is attempted.

To support these features, an S-algol vectors is compiled into a Javascript
object rather than an array. This object stores the length of the array, the lower

34



bound and the array values. It has a function “get” that allows the vector to
be access and throws and exception if an illegal access is attempted. It has a
function “set” that allows array values to be updated.

This approach supports multi-dimensional arrays” In the case of higher di-
mensional vectors, the Javascript objects store arrays of other Javascript objects
that represent high dimensions.

From the perspective of usability, it is not clear why the decision of customis-
able indexing has been made. It is possible that it is to settle any argumentation
over whether arrays should be 0-indexed or in fact 1-indexed. Indeed, S-algol
was published at a similar time to Dijkstra’s article “Why numbering should
start at zero” [6] which presents an argument as to why arrays should be in-
dexed from zero. Clearly, at this time zero-indexing was less of an assumption
than it is today.

9 Static analysis

The lexer, parser and code generation phases are, for the most part, necessary
and sufficient for an end-to-end compiler implementation. However, there is
much further development possible in the static analysis of the code. Static
analysis is the inspection of code without running it and can be used to report
errors to a programmer that will cause the program not to execute or to execute
in unexpected ways.

9.1 Implementation Structure of Static Analysis

Most static analysis requires one or more passes through the abstract syntax
tree representation. Since the ordering of these passes is generally the same, it
makes sense to use the same visitor pattern that was used in the meta-compiler
to abstract the analysis of each node in the tree from the traversal mechanism.
Using this pattern, a visitor object may be implemented with a set of functions
called afterVisit <node> and beforeVisit <node> (where <node> is the name
of an abstract syntax tree type). This allows a visitor some flexibility in whether
it needs to traverse the tree in-order (left-to-right) or post-order (right-to-left).
For example, to work out the actual return type of a procedure, it may be
necessary to visit the procedure after its body has been visited.

More generic functions are also implemented such as “afterVisitNode” and
“beforeVisitNode”. These are called for every tree node visitation. The utility
of these functions is demonstrated in Listing 32 which shows a traversal that
touches all syntax nodes and treats them as the same type (since all nodes may
have errors).

A further implementation detail that seemed appropriate was to use classes
to represent errors. This means that meta-data can be stored within error mes-
sages such that they can be made informative. Furthermore, the instantiations
of these errors are stored within the abstract syntax objects as an array. This
means that if - for example - there is a type error on an operation, the error
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will be stored in the node that represents that operation. It makes sense to
keep errors tightly bound to syntax tree nodes in this way since it maintains
an implicit ordering of errors (inline with the flow of the original program) and
also allows for simple inspection of nodes for testing purposes.

Given this method of storing errors, a visitor class is implemented to traverse
the tree and output error messages to std.err. Listing 32 shows the code that
prints the errors. It also demonstrates the terseness of the code that can be
written using the visitor pattern: most of the complexity of this feature is
wrapped up in the visit function.

Listing 32: Error outputting visitor

export class ErrorOutputting extends SuperVisitor {
foundErrors = false;

afterVisitNode (node: A.AbstractSyntaxType) {
if (node.errors && node.errors.length > 0) {
this.foundErrors = true;
for (let error of node.errors) {
console.error(error.toString());
}

}

}

// the visit function comes from a separate module
that implements the abstract tree traversal of the
visitor pattern

// the abstractSyntaxTree is an S—algol program in
tree form

visit (abstractSyntaxTree, new ErrorOutputting());

9.2 Scope Checking

A basic type of static analysis is checking for scope irregularities. This might
pick up problems such as a variable, procedure or structure being operated on,
applied or initialised when it has not already been declared. let a = b + 17 is
an example of a program that might trigger a scoping error. Here, the variable
b is referred to despite the fact that it has not been yet been declared.

S-algol has a simple block-scoping mechanism. A begin keyword or { starts a
scope that continues until the next unmatched end keyword or }. Any variable
declared within a scope is available until the end of the scope and in all child
scopes that exist within it.

Listing 33 represents a correctly scoped program. Variable a is declared and
initialised in the outer scope, updated in a child scope and written to std.out.
The program will print '2’.
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Listing 33: Correctly scoped program

let a = 1;
if true do { a =2 };
write a?

Listing 34 represents an incorrectly scoped program. Variable z is declared
within a child scope and an access attempt is made in the parent scope. By the
time the access attempt is made, that variable is no longer in scope.

Listing 34: Incorrectly scoped program

if true do { let z =3 };
write z?7

In this compiler implementation, scope-checking has a two fold advantage.
Primarily, it helps a programmer catch bugs that they may not have noticed.
However it is also a requirement for a correct implementation. Since Javascript
is more permissive than S-algol, an incorrectly-scoped program may fail silently.
For example, the incorrectly scoped program in listing 34 might be compiled
to the Javascript code shown in Listing 35. This - when executed - will print
’3” as a programmer might have expected from the original S-algol code. This,
however, is incorrect usage of the language since the variable z should ordinarily
have left the scope. Such usage should be discouraged since it might lead to
incompatibility with other S-algol implementations.

Listing 35: Possible compilation of Listing 34

if (true) {
var z = 3;
}

console.log(z);

The implementation of the scope checking algorithm is straight forward.
Before traversal, an empty stack is initialised. The abstract syntax tree is then
traversed in-order.

When the program is entered and at every entry to a scope, a dictionary
object is pushed onto a stack. Every declaration of a variable, procedure or
structure that is encountered is recorded in the top-most dictionary object of
the stack using the identifier as the key and any meta-information as the value.

The identifier of every variable, procedure or structure access is checked
against the objects in the stack from the top to the bottom. If no objects in the
stack contain the identifier then it is not available in scope and there is a scope
error.

Whenever a scope is exited, an object is popped from the stack. This causes
all variables that were declared in that scope to be no longer visible to the scope
checker.
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9.3 Type Checking

Type checking finds problems in programs that are caused by incorrect passing
of literals or identifiers. For example, a variable x may be declared as type a
and operated on as though it were some incompatible type b. This represents
a type checking error.

The implementation of type checking has a very similar mechanism to scope
checking. This is because type checking also relies on keeping track of the
current variable scope just as much as scope checking does. However, in the type
checking implementation, more detail must be kept about the declarations. In
this compiler implementation, the abstract syntax tree objects of declarations
are kept as values of the objects in the scope stack that represent the current
scope and all parent scopes. These abstract syntax tree objects contain all
the relevant meta-data about a declaration. For a procedure, this would be
its signature and return type; for a variable, its type; and for a structure, its
signature. As such, when an application of one of these language features is
encountered, it can be checked for correctness based on this meta-data.

To a large extent, type checking is an aid to the programmer rather than
the compiler. In most cases, the compiler does not need to know about typ-
ing to correctly compile a program. In some cases however, it is necessary.
Listing 9.3 shows such a case. This program uses S-algol’s support for pass-
ing procedures as arguments to other procedures. The high-level procedure
called doAdderThenMultiplyBy2 accepts a procedure and a number, executes
the procedure on the number and multiplies the result by 2. However this syn-
tax conflicts with another syntax feature, that is that procedures in S-algol may
be called without use of parenthesise. As such, another understanding of this
program might be that addOne is executed in line 9 and the result is passed
into doAdderThenMultiplyBy2. Clearly the latter understanding would cause
a type error and the former would not but since the two understandings of
the program imply very different semantics, types must be analysed to produce
correctly output code.

procedure addOne(int —> int); {
a + 1
};

procedure doAdderThenMultiplyBy2 ((int —> int) adder; int
x —> int); {
adder (x) * 2;
}s

let result = doAdderThenMultiplyBy2(addOne, 5);
write result?
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9.4 Error Outputting

An important part of any programming language is the generation of helpful
error messages for a programmer. It is often not enough to know simply that
there has been a error; it is useful to know that there has been a certain type of
error on a specific line with a specific operation. This helps a programmer fix
the mistake and write correct code. Sometimes a compiler might even be able
to offer advice as to fixes that a programmer can make. Often however, it is
hard to infer the intent of a programmer from a piece of incorrect code.

This compiler provides three types of error message. The first is that of
errors triggered during parsing. For example, if the input program does not
have valid syntax. The second type is errors picked up by static analysis. For
example, a type error. The third, is a runtime error. These may be triggered
by an incorrectly accessed array. Runtime errors cannot be inferred at com-
pile time because they require evaluation of the program which is a generally
uncomputable problem.

Listing 36 shows some error messages that might be output by this compiler.
S-Algol code that yields such errors can be found in Appendix A.

Listing 36: ”Error Message examples”

[Parser Error] The input program is not complete.

[Parser Error] Line 0: ’semi_colon’ is not a recognisable
way of starting a <write_list> production.

[Error| Could not execute ADD on int and bool.

)

[Error] No function or variable named ’a’ found in scope.

[Error| The vector ’a’ only has 0 dimension(s). You tried
to access dimension 1.

[Error] Could not apply 2 arguments to ’a’ since it only
usually takes 1.

[Error] Could not apply expression of type string to
argument of type int as argument number 1 in the
method a.

[Runtime Exception] Program attempted to access array
index that is out of bounds.

A limitation in the implementation means that line numbers do not get
passed from the concrete syntax tree to the abstract tree during conversion.
Since type checking is performed on the abstract tree, line numbers are not
available here. Given more time, it would be possible to make the static analysis
error messages more informative by providing line numbers.

10 Evaluation and critical appraisal

Considering the ambition and scope of the project, I am pleased with the out-
comes. The mitigating factor on the success of the project is that the overall
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tool-chain does not work for all S-algol inputs. Unfortunately this manifests it-
self like an iceberg such that the small tip appears temperamental but the bulk
of the project is of a high standard and robust: the lexer and parser stages and
overall tool-chain are mature and work reliably; however, the code generation
and static analysis do no fully conform to the S-algol specification. This makes
the code overall seem buggy and non-functional because there are cases where
the compiler cannot compile inputs.

Completion of the compiler however is only a question of more time rather
than that of severe design flaws in the project. As mentioned in the testing
section, this time would be best spent running the compiler on the repository
of real-life code. Also, the implementation is sufficient that it can be useful to
people interested in S-algol which was the fundamental requirement.

10.1 Use of the meta-compiler

The most ambitious aspect of this project is the meta-compiler implementation.
It was not so much ambitious in its size but in its difficulty. I would argue
however that it was worth implementing since it took around the same amount
of time as it might have to hand-write a recursive descent parser. Furthermore, it
allowed me to adjust the grammar flexibly by simply editing the BNF notation.

By writing a custom parser generator, it was possible to design a parser
specifically for the Typescript programming language. This meant that the com-
piler could be made fairly robust. For example, the entire compiler tool-chain
is written in a type-safe manner, this could not have been achieved without the
custom parser generator producing Typescript classes. Implementing a parser
generator also added some extra challenge to the project. It also provided an
excellent insight to the nature of grammars and the difficulty in specifying them.

10.2 Incomplete Features

It is unfortunate that the full set of S-algol features could not be implemented
by this project. This was due to both technical reasons and time constraints.
The technical reasons are addressed in the implementation sections.

The time constraints could arguably be because of the scope of the project.
Writing a compiler for a full language is by no means a simple task. The line-
count command “wec -1 ./src/**/**.ts” yields a result of nearly 10,000 lines of
code — although around 20% of this is generated by the meta-compiler.

10.3 Tooling

One key limitation of this S-Algol implementation compared with other Javascript
compilers that are available is that of tooling integration. To be a competitive
compile-to-Javascript language, it is important to have integrations with build
tools and IDEs. It would be possible to engineer these for this compiler. How-
ever, the core features of the language were a higher priority.
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10.4 Comparison between S-algol and modern-day lan-
guages

In the context survey, it is identified that S-algol is part of the genus of modern
programming languages. It is therefore appropriate to compare it with modern-
day languages as a linguist might compare Latin to English. And, just as
English and Latin resemble each other, so the basic components of S-algol are
easily recognisable in all modern-day imperative languages.

A key difference in S-algol to a language such as Javascript is the use of
first-class syntax to represent high level features. For example, image manipu-
lation is built into the language at a syntax level whereas in Javascript, images
are simply treated as regular objects. This represents a trend in programming
languages as a whole: to move features from the syntax and implement them
as libraries. This means that compiler design can be simpler and more portable
across architectures. However, it does make it harder to target optimisation
since it might be considered inelegant to target specific libraries within a com-
piler.

In S-algol, there are functions that are “hard-coded” into the grammar which
in modern languages might also be considered part of standard libraries. This
includes finding the bounds of an array and doing io operations.

The handling of clauses as expressions is not seen explicitly in modern lan-
guages. Most languages have some basic syntax to do similar things such as
ternary operators. It is likely that this approach has been moved away from
since it produces cluttered, confusing code.

Similarly, the lack of explicitly returned values is not very clear for program-
mers of modern day languages. An expression at the end of a block in S-algol
is the returned value of that block. In Javascript for example, expressions must
be prefixed by ’return’.

10.5 External Evaluation

During this project, I had three sources of external input. Throughout the im-
plementation, Graham Kirby, my supervisor offered guidance. At the end, Kevin
Hammond (original author of Glasgow Haskell Compiler) and Ryan Cavanaugh
(Typescript contributor at Microsoft) also contributed some advice.

During implementation stages of the project Graham had suggested that
the meta-compiler approach might be solving a bigger problem than was nec-
essary. However, not being able to see a simpler solution to the parser stage, I
implemented it nonetheless.

When I talked over the compiler implementation with Kevin, he agreed with
the decision to use multi-pass rather than single-pass architecture. However, he
did say that the meta-compiler implementation was somewhat over-complicated
and that it would have been better to use an external library. He said that it
might have been better to focus on completing later stages of the compiler
rather than the parser. Although he did qualify this with the suggestion that
a custom meta-compiler implementation might be appropriate if very specific
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customisations were required. This did advantage my implementation to a cer-
tain extent since I was able to generate Typescript classes which would not have
been possible if using a generic parser generator.

Ryan said that it was a very interesting project and requested to add it
to the Typescript repository of “real-world” project examples. He said that
the fact that I using the Typescript language in unusual ways (for example,
dynamically generating classes through the meta-compiler) would mean that it
would provide an interesting test case. This further reinforced my impression
that the best way to finesse a compiler is to work with as many real-world
examples as possible.

11 Conclusions

This project has provided a fascinating insight into the nature of compilers and
computer languages. It is likely that had I implemented the parser stages in a
less robust, quicker way, I might have been able to produce a more complete code
generation stage and thereby be able to handle more S-algol inputs. However,
the learning experience that has come from implementing the parser in detail
has been more educationally rewarding than a finessed compiler implementation
would have been; certainly I believe I have learnt more through doing this than I
would have through running lots of test cases on the project and making tweaks
to support esoteric features.

I am satisfied that I have produced a high-quality software engineering
project which is extensible. When feedback has been complete for the project, I
will release the source on GitHub and publish web interface to fulfil the require-
ment that it provide a resource for people who are interested by the language.
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Appendices

A

Testing summary

S-Algol Code

tion and Evaluation

write 2 = 27 true
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Output After Compila-




write 27

write 1 + 1.17

2.1

write "test”?

test

if true
then write 1
else write 27

if false
then write 1
else write 27

let a = 4;
a = a + 1;
write a?

let a = 4;
repeat a :=
write a?

a + 1 while a < 10;

10

let a = 4;
while a < 10 do a
write a?

= a + 1;

10
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let a = 0;
repeat {
write 1;
a = a+ 1
} while a < 2 do write 27

let a = 0;

begin
let a = 4;
write a

end ;

write a?

let a = 0;

{
let a = 4;
write a

write a?

let a =@ 0 of int[1,2,3,4];
write a(3)7?

let a =@ 0 of *int[@ 2 of int
[1,2,3,4]];
write a(0, 2)?

procedure a(int b —> int); b;
write(a(4))?
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procedure a(real b —> real); b; 4.12
write(a(4.12))?

let a =@ 0 of int [1,2,3,4]; 3
procedure b(xint arr —> int); arr(2);
write(b(a))?

let a (= —1; 1
write abs(a)?

let a = 1; 3
let b = if a > 0 then 3 else 4;

write b?

let a = {let q = 1; q + 2}; 3
write a?

let x = 0; while x < 10 do x:=x41; write | 10

107
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procedure fibpair( int n —> xint );

if n =1 then @l of int[ 1,0 | else
if n =2 then @1 of int[ 1,1 ] else
if n rem 2 = 0 then
begin

let fg = fibpair( n div 2 );

let f =1fg( 1 );

let g = fg( 2 );

let s =1 x f;

let t =g * g;

@Ql of int[ s +2 % f % g,s + t |
end else
begin

let fg = fibpair( n — 1 );

@1l of int| fg( 1 ) + fg(

]
end ;
procedure fib( int n —> int );

if n = 0 then 0 else fibpair( n )( 1 );

for i =0 to 5 do write i,fib( 1 )?

2 ),fg( 1

= w NN = O
W~ = O

Table 1: S-Algol compilation test cases

S-Algol Code

Output After Compilation and
Evaluation

[Parser Error] The input pro-
gram is not complete.

write ;7

[Parser Error] Line
1\: ’semi_colon’ is
not a recognisable
way of starting a
<write_list >
production .

47




let a =1 + true?

[Error] Could not execute ADD
on int and bool.

[Error] No function or vari-
able named ’a’ found in scope.
[Error] No function or vari-
able named "undefined’ found in
scope.

let a =1

write a?

[Error] No function or variable
named ’a’ found in scope.

let a =@ 0 of int [1, 2, 3];

write a(l, 2)?

[Error] The vector ’a’ only has
1 dimension(s). You tried to ac-
cess dimension 0.

let a =@ 0 of int [1,
write a(l, 2)?

2.0,

3];

[Error] Vector err. [Error] The
vector ’a’ only has 1 dimen-
sion(s). You tried to access di-
mension 0.

let a =1; a(2)7?

[Error] The vector ’a’ only has
0 dimension(s). You tried to ac-
cess dimension 0.

structure test(int a);
let a = test(”test”)?

[Error] Could not apply expres-
sion of type string to argument
of type int as argument number
1 in the method ’test’.

structure test(int a);
let a = test (1, 2)7

[Error] Dereference error..
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[Error] Could not apply expres-
sion of type string to argument
of type int as argument number
1 in the method ’test’.

structure test(int a);
let a = test(” wrongargtype”)?

Table 2: S-Algol compilation test cases that correctly notice errors

B User manual

The project dependencies and build are handled by npm. The project is pro-
vided with compiled sources and dependencies but to install them from scratch,
clean the build using 'rm —rf ./node_modules/ ./bin/ ./typings/’ then run 'npm
install’.

B.1 Regular Usage

The command line interface is accessible using the utility ./s, found in the
root of the project. This accepts S-algol programs from stdin or quoted inline.
Listing 93 shows two ways of interfacing with the compiler.

Listing 93: ”Command Line Interface”

# print compiled code to stdout
./s —cs 7write 177
echo ”write 177 | ./s —cs

# execute compiled code using node Javascript

echo 7let a = if true then 1 else 2; write a?” | ./s —cs
| node
./s —cs 7let a = if true then 1 else 2; write a?” | node

B.2 Testing

To test the project run npm run test in the root directory.

B.3 Project Layout

The project sources are laid out in the following directories.
./src/ contains the project source.

./src/metaCompiler contains the source of code which handles compilation
and manipulation of the S-algol grammar.
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./src/web contains the source code for the web interface.
./src/sAlgolCompiler contains the source of the S-algol compiler.

./src/sAlgolCompiler /generatedFiles contains the files generated by the
meta-compiler for use by the main compiler.

./src/sAlgolCompiler/generatedFileHelpers contains non-generated
files that augment the generated files.

./src/sAlgolCompiler/sAlgolSources contains implementations of the S-
algol standard library and some procedure declarations.

./src/sAlgolCompiler/visitors contains compilation phases that are imple-
mented using the visitor pattern such as type checking.

./src/test contains mocha test files.
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